
CISC 3115 TY3

C20b: Class Design Guideline
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

10/31/2018 1CUNY | Brooklyn College



Outline

• Discussed

• Recap

• Inheritance and polymorphism 

• Abstract method and class

• Interface

• Motivation 

• Define interface

• Extend interface

• Implement interface

• Use interface as data type

• Interfaces in selected Java API

• Class design guidelines

• Reiterate your project considering the guideline

10/31/2018 CUNY | Brooklyn College 2



Guideline

• Consider

• Cohesion

• Consistency

• Encapsulation

• Clarity

• Completeness

• Instance vs. static members

• Inheritance vs. aggregation

• Interface vs. abstract class

10/31/2018 CUNY | Brooklyn College 3



Interface vs. Abstract Class

• (Since JDK 8)

• In an interface, the data must be constants; 
an abstract class can have all types of data.

• Each method in an interface has only a 
signature without implementation; an 
abstract class can have concrete methods.

10/31/2018 CUNY | Brooklyn College 4



Interface vs. Abstract Class: 
Data Fields and Methods
• Data fields, constructors, and methods

10/31/2018 CUNY | Brooklyn College 5



Interface vs. Abstract Class: 
Class Hierarchy
• All classes share a single root, the Object class, 

but there is no single root for interfaces. 

• Like a class, an interface also defines a type. 

• A variable of an interface type can reference any 
instance of the class that implements the interface. 

• If a class implements an interface, this interface 
plays the same role as a superclass. 

• You can use an interface as a data type and cast a 
variable of an interface type to its subclass, and vice 
versa.

10/31/2018 CUNY | Brooklyn College 6



Interface vs. Abstract Class: 
Class Hierarchy
• UML class diagram

10/31/2018 CUNY | Brooklyn College 7



Caution: Conflict Interfaces

• In rare occasions, a class may implement two 
interfaces with conflict information 

• Examples

• Two same constants with different values, or 

• Two methods with same signature but different return 
type). 

• This type of errors will be detected by the Java 
compiler.

10/31/2018 CUNY | Brooklyn College 8



Design Guideline: Interface or 
Abstract Class?
• Abstract classes and interfaces can both be used to model common 

features. How do you decide whether to use an interface or a class? 

• In general, a strong is-a relationship that clearly describes a parent-
child relationship should be modeled using classes. 

• For example, a staff member is a person. 

• A weak is-a relationship, also known as an is-kind-of relationship, 
indicates that an object possesses a certain property. A weak is-a 
relationship can be modeled using interfaces. 

• For example, all strings are comparable, so the String class implements the 
Comparable interface. 

• You can also use interfaces to circumvent single inheritance 
restriction if multiple inheritance is desired. 

• In the case of multiple inheritance, you have to design one as a superclass, and 
others as interface

10/31/2018 CUNY | Brooklyn College 9



Example: The Rational Class

• Just one more example …

10/31/2018 CUNY | Brooklyn College 10



The Rational Class

10/31/2018 CUNY | Brooklyn College 11



Questions?

• Interface vs. abstract class

10/31/2018 CUNY | Brooklyn College 12



Coherence

• A class should describe a single entity, and 
all the class operations should logically fit 
together to support a coherent purpose. 

• Example: You can use a class for students, but 
you should not combine students and staff in the 
same class, because students and staff have 
different entities

10/31/2018 CUNY | Brooklyn College 13



Separating Responsibilities

• A single entity with too many responsibilities 
can be broken into several classes to separate 
responsibilities. 

• Example: The classes String, StringBuilder, and 
StringBuffer all deal with strings, but have different 
responsibilities. 

• The String class deals with immutable strings.

• The StringBuilder class is for creating mutable strings.

• The StringBuffer class is similar to StringBuilder except 
that StringBuffer contains synchronized methods for 
updating strings.

10/31/2018 CUNY | Brooklyn College 14



Reuse

• Classes are designed for reuse. Users can 
incorporate classes in many different 
combinations, orders, and environments.

• Therefore, you should design a class that 
imposes no restrictions on what or when the 
user can do with it, design the properties to 
ensure that the user can set properties in any 
order, with any combination of values, and 
design methods to function independently of 
their order of occurrence

10/31/2018 CUNY | Brooklyn College 15



No-arg Constructor, equals, and 
toString Methods
• Whenever possible,

• provide a public no-arg constructor,

• override the java.lang.Object::equals method 
(conforming the contract), and

• overrides the java.lang.Object::toString
method

10/31/2018 CUNY | Brooklyn College 16



Convention and Styles

• Follow standard Java programming style and 
naming conventions. 

• Choose informative names for classes, data 
fields, and methods. 

• Always place the data declaration before the 
constructor, and place constructors before 
methods. 

• Always provide a constructor and initialize 
variables to avoid programming errors

10/31/2018 CUNY | Brooklyn College 17



Using Visibility Modifiers

• Each class can present two contracts

• one for the users of the class 

• and the other for the extenders of the class

• Make the fields private and accessor methods public if they are 
intended for the users of the class. 

• Make the fields or method protected if they are intended for 
extenders of the class. 

• The contract for the extenders encompasses the contract for the 
users. The extended class may increase the visibility of an instance 
method from protected to public, or change its implementation, but 
you should never change the implementation in a way that violates 
that contract.

• And more in next slide …

10/31/2018 CUNY | Brooklyn College 18



Using Visibility Modifiers

• A class should use the private modifier to hide 
its data from direct access by clients. 

• You can use getter methods and setter methods 
to provide users with access to the private 
data, but only to private data you want the user 
to see or to modify. 

• A class should also hide methods not intended 
for client use. 

• Example: the gcd method in the Rational class is 
private because it is intended only for internal use 
within the class

10/31/2018 CUNY | Brooklyn College 19



Using the static Modifier

• A property that is shared by all the 
instances of the class should be declared as 
a static property

10/31/2018 CUNY | Brooklyn College 20



Questions?

• Consider

• Cohesion

• Consistency

• Encapsulation

• Clarity

• Completeness

• Instance vs. static members

• Interface vs. abstract class

• Inheritance vs. aggregation (behavior and states)

10/31/2018 CUNY | Brooklyn College 21


