
CISC 3115 TY3

C18a: Abstract Class and
Method

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

10/31/2018 1CUNY | Brooklyn College

Outline

• Recap

• Inheritance and polymorphism

• Abstract method and class

• Exercises

• C18a-1

• C18a-2

• C18a-3

10/31/2018 CUNY | Brooklyn College 2

Recap: Inheritance and
Polymorphism
• Problem: leveraging on polymorphism, write

generic method to compute total areas of a
list of geometric shapes.

10/31/2018 CUNY | Brooklyn College 3

The Shape Class Hierarchy

10/31/2018 CUNY | Brooklyn College 4

Shape

+ getArea(): double

Circle

+ getArea(): double

Rectangle

+ getArea(): double

Recap: Inheritance and
Polymorphism
• Problem: leveraging on polymorphism, write generic

method to compute total areas of a list of geometric
shapes.

• Solution

public double sumAreasOfShapes(ArrayList<Shape> shapeList) {

double sum = 0.;

for(Shape shape: shapeList) {

sum += shape.getArea();

}

return sum;

}

10/31/2018 CUNY | Brooklyn College 5

The Dilemma

• Problem: leveraging on polymorphism, write
generic method to compute total areas of a
list of geometric shapes.

• Dilemma: but can we compute a shape’s area
without knowing the specification of the
shape (e.g., type of shape, parameters of
the shape)?

10/31/2018 CUNY | Brooklyn College 6

The Shape Class

• Do you like the getArea() method here?
public class Shape { …

public double getArea() {

throw new UnsupportedOperationException("Cannot invoke the method");

}

}

• Remarks

• We know semantically that each shape has a behavior to compute
its area

• However, we don’t know the algorithm without knowing the actual
shape

• The “dummy” method in the above is not only semantically
undesired, but also can easily cause runtime errors.

10/31/2018 CUNY | Brooklyn College 7

cisc3115_c14b.pdf#page=4

Abstract Method

• An abstract method has no implementation

public abstract double getArea() ;

10/31/2018 CUNY | Brooklyn College 8

Abstract Method: No
Implementation
• Let’s declare an abstract method. How about

these code snippets?

10/31/2018 CUNY | Brooklyn College 9

abstract double getArea() ;

abstract double getArea() {}

abstract double getArea() {

}

double getArea() ;

double getArea() {}

Abstract Method: No
Implementation
• Let’s declare an abstract method. How about

these code snippets?

10/31/2018 CUNY | Brooklyn College 10

abstract double getArea() ;

abstract double getArea() {}

abstract double getArea() {

}

double getArea() ;

double getArea() {}

Abstract Class

• In Java, any class that has an abstract method
must be declared “abstract”

• Example

abstract class Shape {

public abstract double area() ;

}

• Abstract class: a class that is declared abstract

• Abstract classes cannot be instantiated, but
they can be subclassed.

10/31/2018 CUNY | Brooklyn College 11

Class with Abstract Method

• Abstract method: a method that is declared
without an implementation

abstract void makeNoise();

• A class that has an abstract method must be
declared abstract

• How about these two code snippets?

10/31/2018 CUNY | Brooklyn College 12

class Animal {

abstract void makeNoise();

}

abstract class Animal {

abstract void makeNoise();

}

Class with Abstract Method

• A class that has an abstract method must be
declared abstract

10/31/2018 CUNY | Brooklyn College 13

class Animal {

abstract void makeNoise();

}

abstract class Animal {

abstract void makeNoise();

}

Abstract Class: Subclass &
Instantiation
• Abstract classes cannot be instantiated, but

they can be subclassed.

abstract class Shape {

public abstract double area() ;

}

• How about these code snippets?

10/31/2018 CUNY | Brooklyn College 14

Shape s = new Shape(); class Circle extends Shape {…}

Shape s = new Circle();

Abstract Class: Subclass &
Instantiation
• Abstract classes cannot be instantiated, but

they can be subclassed.

abstract class Shape {

public abstract double area() ;

}

• How about these code snippets?

10/31/2018 CUNY | Brooklyn College 15

Shape s = new Shape(); class Circle extends Shape {…}

Shape s = new Circle();

The Shape Class Hierarchy:
Abstract Shape

10/31/2018 CUNY | Brooklyn College 16

Shape

+ getArea(): double

Circle

+ getArea(): double

Rectangle

+ getArea(): double

In UML class diagram,
italicize names of
abstract classes and
methods

Subclass an Abstract Class

• Concrete subclass

• A subclass may provide implementations for all
of the abstract methods in its parent class.

• Abstract subclass

• The subclass must also be declared abstract if it
does not provide implementation of all of the
abstract methods in its parent class.

• The subclass may also declare abstract method
itself

10/31/2018 CUNY | Brooklyn College 17

Concrete Subclass

• A subclass provides implementations of all of
the abstract methods declared in its
superclass.

• An abstract method thus can have many
implementations.

10/31/2018 CUNY | Brooklyn College 18

The Shape Class Hierarchy:
Concrete Subclasses
• Abstract class Shape’s getArea method has

many implementations in the abstract class’s
subclasses

10/31/2018 CUNY | Brooklyn College 19

Shape

+ getArea(): double

Circle

+ getArea(): double

Rectangle

+ getArea(): double

RightTriangle

+ getArea(): double

Concrete Subclass

• Example:

public class RightTriangle extends Shape {

private double base;

private double height;

……

public double getArea() {

return 0.5 * base * height;

}

}

10/31/2018 CUNY | Brooklyn College 20

Abstract Subclass

• The subclass must also be declared abstract
if it does not provide implementation of all
of the abstract methods in its superclass.

• The subclass may also declare abstract
method itself.

10/31/2018 CUNY | Brooklyn College 21

Abstract Subclass: Extending
Type Hierarchy
• Motivation: add types

to type hierarchy to
differentiate objects
of different types

10/31/2018 CUNY | Brooklyn College 22

Shape

Triangle Rectangle Circle

RightTriangle EquilateralTriangle

+ getArea(): double

+ getArea(): double

+ getArea(): double + getArea(): double

+ getArea(): double

Abstract Subclass: Extending
Type Hierarchy
• Example:

public abstract class Triangle extends Shape {

public Triangle(String name) {

super(name);

}

public int getNumberOfSides() {

return 3;

}

}

• Remark:

• An abstract class must be declared abstract.

• An abstract class can have concrete methods.

10/31/2018 CUNY | Brooklyn College 23

Abstract Subclass: Add New
Abstract Behavior
• Motivation: add new,

but “unspecified”
behavior to an
abstract class

10/31/2018 CUNY | Brooklyn College 24

Shape

Triangle Rectangle Circle

RightTriangle EquilateralTriangle

+ getArea(): double

+ getArea(): double
+ isEquilateral(): boolean

+ getArea(): double + getArea(): double+ isEquilateral(): boolean

+ getArea(): double
+ isEquilateral(): boolean

Abstract Subclass: Add New
Behavior
• Example:

public abstract class Triangle extends Shape {

public Triangle(String name) {

super(name);

}

public int getNumberOfSides() {

return 3;

}

public abstract boolean isEquilateral();

}

10/31/2018 CUNY | Brooklyn College 25

Questions?

• Abstract class

• Abstract method

• Extending abstract class

• Concrete subclass

• Abstract subclass

• Example programs

10/31/2018 CUNY | Brooklyn College 26

Exercise C18a-1

• In this exercise, you are to compare the Shape class hierarchies with
and without making Shape class abstract.

• Create directory C18a-1 in your weekly practice repo, and copy the two
directories “ConcreteShape” and “AbstractShape” to your C18a-1 directory

• Add a RightTriangle class with two data fields, base and height to the
programs in both of the “ConcreteShape” and “AbstratShape” directories, the
class is a subclass of the Shape class. (As seen in UML class diagram in this
Slide)

• Revise the 4 client classes (e.g., ShapeClient, ShapeClientError, etc) to use
your RightTriangle class.

• Compile and run the programs, and observe compilation error and runtime
error if any.

• Write a comment in the client programs to explain what you observe.

• Submit your work using git

10/31/2018 CUNY | Brooklyn College 27

https://github.com/CISC3115TY3FA18/SamplePrograms/tree/master/C18aAbstractClass

Exercise C18a-2

• In this exercise, you are to realize the UML class diagram in the
slide.

• Create directory C18a-2 in your weekly practice repo, and copy the programs
in the “AbstractShape” directory in your answers to C18a-1 to the directory

• Add an abstract class Triangle extending the Shape class as shown in the UML
class diagram (in the slide).

• Conforming to the UML class diagram, revise the RightTriangle class so that it
extends the Triangle class

• Conforming to the UML class diagram, create the EquilateralTriangle class

• Revise the ShapeClient class to use all the concrete classes in the Shape class
hierarchy, and also add statements to demonstrate the use of the
isEquilateral method.

• Use git to make a submission

10/31/2018 CUNY | Brooklyn College 28

Exercise C18a-3

• In this exercise, you are to realize the UML class diagram in next
slide.

• Create directory C18a-3 in your weekly practice repo, create all the classes
from scratch in the UML class diagram shown in the next slide.

• Note that Animal and Feline are abstract classes

• Note that makeNoise and pounce are abstract methods. To implement the methods
in concrete subclasses, simply print out an appropriate message, such as, “Cat purrs”,
“Panther roars”, “Dove coos”, “Whale clicks”, “Cat pounces”, “Panther pounces”, etc.

• Write a client class, called the AnimalClient class. In the client, write three
methods

• Two generic methods, one of which takes an ArrayList of Animals and invokes each
Animal’s makeNoise method, and the other of which takes an ArrayList of Felines
and invokes each Feline’s pounce method

• A main method that demonstrates the use of the two generic methods.

• Use git to make a submission

10/31/2018 CUNY | Brooklyn College 29

C18a-3: The Animal Class
Hierarchy

10/31/2018 CUNY | Brooklyn College 30

Animal

Feline Dove Whale

Cat Panther

+ makeNoise(): void

+ pounce(): void + makeNoise(): void + makeNoise(): void

+ makeNoise(): void
+ pounce(): void

+ makeNoise(): void
+ pounce(): void

