
CISC 3115 TY3

C17a: Exception and Text
File I/O

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

10/11/2018 1CUNY | Brooklyn College

Outline

• Discussed

• Error and error handling

• Two approaches

• Exception

• The throwable class hierarchy

• System errors and semantics

• Runtime exceptions and semantics

• Checked errors and semantics

• Declaring, throwing, and catching exception

• Exception, call stack, stack trace, the finally clause, and rethrowing exceptions

• Custom exceptions

• Exception and simple text/character File I/O

10/11/2018 CUNY | Brooklyn College 2

Path and File

• Concept of path in OS

• The Path interface and Paths helper class

• The File and Files classes

4/9/2018 CUNY | Brooklyn College 3

File System Trees

• A file system stores and organizes files on
some form of media allowing easy retrieval

• Most file systems in use store the files in a
tree (or hierarchical) structure.

• Root node at the top

• Children are files or directories (or folders in
Microsoft Windows)

• Each directory/folder can contain files and
subdirectories

4/9/2018 CUNY | Brooklyn College 4

Path

• Identify a file by its path through
the file system tree, beginning
from the root node

• Example: identify Hw1.txt

• OS X

• /home/alice/Hw1.txt

• Windows

• C:\home\alice\Hw1.txt

• Delimiter

• Windows: “\”

• Unix-like: “/”

4/9/2018 CUNY | Brooklyn College 5

/ (OS X, Linux, Unix)
Or
C:\ (Windows)

home data

alice bob Readme.txt

Hw1.txt

Relative and Absolute Path

• Absolute path

• Contains the root element and the complete directory list required
to locate the file

• Example: /home/alice/Hw1.txt or C:\home\alice\Hw1.txt

• Relative path

• Needs to be combined with another path in order to access a file.

• Example

• alice/Hw1.txt or alice\Hw1.txt, without knowing where alice is, a program
cannot locate the file

• “.” is the path representing the current working directory

• “..” is the path representing the parent of the current working
directory

4/9/2018 CUNY | Brooklyn College 6

Symbolic Link and Hard Link

• A file-system object (source) that points to another
file system object (target).

• Symbolic link (soft link): an “alias” to a file or directory
name

• Hard link: another name of a file or directory

4/9/2018 CUNY | Brooklyn College 7

File or Directory
Content on Disk (e.g.,

inode in Linux)

File or Directory
Name

Hard Link
Symbolic Link (or

Soft Link)

Transparency to Users

• Links are transparent to users

• The links appear as normal files or directories,
and can be acted upon by the user or application
in exactly the same manner.

• Create symbolic links from the Command
Line

• Unix-like: ln

• Windows: mklink

4/9/2018 CUNY | Brooklyn College 8

Unix-like OS: Example

• Unix-like (e.g., Linux, OS X): “#” leads a comment. do the following on the terminal,

• echo “hello, world!” > hello.txt # create a file, the content is “hello, world!”

• ln -s hello.txt hello_symlink.txt # create a soft link to hello.txt

• ls -l hello_symlink.txt # list the file, what do we observe?

• cat hello_symlink.txt # show the content using the symbolic link, what do we observe?

• ln hello.txt hello_hardlink.txt # create a hard link

• ln -l hello_hardlink.txt # observation?

• cat hello_hardlink.txt # observation?

• mv hello.txt hello2.txt # rename hello.txt

• ls -l hello_symlink.txt # observation?

• ln -l hello_hardlink.txt # observation?

• cat hello_symlink.txt # observation?

• cat hello_hardlink.txt # observation

4/9/2018 CUNY | Brooklyn College 9

Window: Example

• On Windows, it requires elevated privilege to create file symbolic link. Do not type the
explanation in “()”.

• echo “hello, world!” > hello.txt (create a file, the content is “hello, world!”)

• mklink hello_symlink.txt hello.txt (create a soft link to hello.txt)

• dir hello_symlink.txt (list the file, what do we observe?)

• more hello_symlink.txt (show the content using the symbolic link, what do we observe?)

• mklink /h hello_hardlink.txt hello.txt (create a hard link to hello.txt)

• dir hello_hardlink.txt (observation?)

• more hello_hardlink.txt (observation?)

• move hello.txt hello2.txt (rename hello.txt)

• dir hello_symlink.txt (observation?)

• dir hello_hardlink.txt (observation?)

• more hello_symlink.txt (observation?)

• more hello_hardlink.txt (observation?)

4/9/2018 CUNY | Brooklyn College 10

Questions?

• Concept of file system trees

• Concept of paths

• Traversal of file system trees

• Absolute path

• Relative path

• Symbolic link and hard link

4/9/2018 CUNY | Brooklyn College 11

The File Class

• java.io.File

• It provides an abstraction that deals with most
of the machine-dependent complexities of files
and path names in a machine-independent
fashion.

• It is a wrapper class for the file name and its
directory path.

• The filename is a string.

10/11/2018 CUNY | Brooklyn College 12

The File Class: API

10/11/2018 CUNY | Brooklyn College 13

https://docs.oracle.com/javase/10/docs/api/java/io/File.html

Example Problem: Explore File
Properties
• Objective

• Write a program that demonstrates how to
create files in a platform-independent way and
use the methods in the File class to obtain their
properties.

• Observe the example

10/11/2018 CUNY | Brooklyn College 14

Example Program: Explore File
Properties

10/11/2018 CUNY | Brooklyn College 15

Text File

• Also called character file.

• Each stores characters

10/11/2018 CUNY | Brooklyn College 16

Characters

• Basic units to form written text

• Each language has a set of characters

• Generally, a character is a code (a binary number)

• A character can have many different glyphs (graphical
representation)

• The 1st letter in the English Alphabet

• Character “a”: a, a, a, a, …

4/9/2018 CUNY | Brooklyn College 17

Binary
Representation

(character code)

Graphical
representation

(glyph)

Table
Lookups

Unicode

• A single coding scheme for written texts of the world’s languages and symbols

• Each character has a code point

• Originally 16-bit integer (0x0000 – 0xffff), extended to the range of
(0x0 – 0x10ffff), e.g., U+0000, U+0001, …, U+2F003, …, U+FF003, …,
U+10FFFF

• All the codes form the Unicode code space

• Divided into planes, each plane is divided into blocks

• Basic Multilingual Plane (BMP), the 1st plane, where a language occupies one or
mote blocks

• Encoding schemes

• Express a code point in bytes: in UTF-8, use 1 to 4 bytes (grouped into
code units) to represent a code point (space saving, backward
comparability with ASCII)

• Code units

4/9/2018 CUNY | Brooklyn College 18

Encoding Scheme: Code Point
and Code Units: Examples
• All code units are in hexadecimal.

4/9/2018 CUNY | Brooklyn College 19

Unicode code
point

U+0041 U+00DF U+6771 U+10400

Representative
glyph

A  東 

UTF-32 code units 00000041 000000DF 00006771 00010400

UTF-16 code units 0041 00DF 6771 D801 DC00

UTF-8 code units 41 C3 9F E6 9D B1 F0 90 90 80

Characters in the Java Platform

• Original design in Java

• A character is a 16-bit Unicode

• A Unicode 1.0 code point is a 16-bit integer

• Java predates Unicode 2.0 where a code point was extended to the range (0x0 –
0x10ffff).

• Example: U+0012: ‘\u0012’

• Evolved design: a character in Java represents a UTF-16 code unit

• The value of a character whose code point is no above U+FFFF is its code
point, a 2-byte integer

• The value of a character whose code point is above U+FFFF are 2 code units or
2 2-byte integers ((high surrogate: U+D800 ~ U+DBFF and low surrogate:
U+DC00 to U+DFFF)

• In Low-level API: Use code point, a value of the int type (e.g., static
methods in the Character class)

4/9/2018 CUNY | Brooklyn College 20

Text I/O

• The File objects contain the methods for
reading/writing data from/to a file.

• Objective: To read/write strings and
numeric values from/to a text file using the
Scanner and PrintWriter classes.

10/11/2018 CUNY | Brooklyn College 21

PrintWriter

10/11/2018 CUNY | Brooklyn College 22

java.io.PrintWriter

+PrintWriter(filename: String)

+print(s: String): void

+print(c: char): void

+print(cArray: char[]): void

+print(i: int): void

+print(l: long): void

+print(f: float): void

+print(d: double): void

+print(b: boolean): void

Also contains the overloaded

println methods.

Also contains the overloaded

printf methods.

.

Creates a PrintWriter for the specified file.

Writes a string.

Writes a character.

Writes an array of character.

Writes an int value.

Writes a long value.

Writes a float value.

Writes a double value.

Writes a boolean value.

A println method acts like a print method; additionally it

prints a line separator. The line separator string is defined

by the system. It is \r\n on Windows and \n on Unix.

The printf method was introduced in §4.6, “Formatting

Console Output and Strings.”

PrintWriter: close()

• Any system resources associated with a
PrintWriter object must be released

• Use PrintWriter::close()

10/11/2018 CUNY | Brooklyn College 23

Write Text to File: Example:
First Try
• See WriteText.java

• Is there any problem?

PrintWriter output = new PrintWriter(file);

// Write formatted output to the file

output.print("John T Smith ");

output.println(90);

output.print("Eric K Jones ");

output.println(85);

// Close the file

output.close();

10/11/2018 CUNY | Brooklyn College 24

Write Text to File: Example:
First Try: Resources Released?
• See WriteText

• Is there any problem?

PrintWriter output = new PrintWriter(file);

// Write formatted output to the file

output.print("John T Smith ");

output.println(90);

output.print("Eric K Jones ");

output.println(85);

// Close the file

output.close();

10/11/2018 CUNY | Brooklyn College 25

Exception may occur, resulting
in close() method not called.

Write Text to File: Example:
Second Try: Close in Finally
• See WriteTextCloseWithFinally

PrintWriter output = null;

try {

output = new PrintWriter(file);

output.print("John T Smith ");

output.println(90);

output.print("Eric K Jones ");

output.println(85);

System.out.println("Wrote to " + file.getAbsolutePath());

System.out.println("Or wrote to relative path " + file.getPath());

} finally {

if (output != null) { output.close(); }

}

10/11/2018 CUNY | Brooklyn College 26

Try-With-Resource

• JDK 7 provides the followings new try-with-
resources syntax that automatically closes
the files.

try (declare and create resources) {

Use the resource to process the file;

}

10/11/2018 CUNY | Brooklyn College 27

Write Text to File: Example:
Second Try: Autoclose
• See WriteTextAutoclose

try (PrintWriter output = new PrintWriter(file)) {

// Write formatted output to the file

output.print("John T Smith ");

output.println(90);

output.print("Eric K Jones ");

output.println(85);

System.out.println("Wrote to " + file.getAbsolutePath());

System.out.println("Or wrote to relative path " + file.getPath());

}

10/11/2018 CUNY | Brooklyn College 28

Questions?

• Concept of character and text file

• Concept of file system path and file

• Writing text using File and PrintWriter

• How to handle exception?

• What are the approaches to release system
resources used by PrintWriter?

10/11/2018 CUNY | Brooklyn College 29

Reading Text Using Scanner

10/11/2018 CUNY | Brooklyn College 30

java.util.Scanner

+Scanner(source: File)

+Scanner(source: String)

+close()

+hasNext(): boolean

+next(): String

+nextByte(): byte

+nextShort(): short

+nextInt(): int

+nextLong(): long

+nextFloat(): float

+nextDouble(): double

+useDelimiter(pattern: String):

Scanner

Creates a Scanner object to read data from the specified file.

Creates a Scanner object to read data from the specified string.

Closes this scanner.

Returns true if this scanner has another token in its input.

Returns next token as a string.

Returns next token as a byte.

Returns next token as a short.

Returns next token as an int.

Returns next token as a long.

Returns next token as a float.

Returns next token as a double.

Sets this scanner’s delimiting pattern.

Example Problem: Replacing
Text
• Problem:

• Write a class named ReplaceText that replaces a string in a text file
with a new string.

• The filename and strings are passed as command-line arguments as
follows:

java ReplaceText sourceFile targetFile oldString newString

• For example, invoking

java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

• replaces all the occurrences of StringBuilder by StringBuffer
in FormatString.java and saves the new file in t.txt.

10/11/2018 CUNY | Brooklyn College 31

Example Program: Replacing
Text
• See ReplaceText

try (// try-with-resource to autoclose resources

Scanner input = new Scanner(sourceFile);

PrintWriter output = new PrintWriter(targetFile);

) {

while (input.hasNext()) {

String s1 = input.nextLine();

String s2 = s1.replaceAll(args[2], args[3]);

output.println(s2);

}

}

10/11/2018 CUNY | Brooklyn College 32

Questions?

• Use Scanner to read text file

10/11/2018 CUNY | Brooklyn College 33

Exercise C17a-1

• In the ReplaceText example program, we use a try-with-
resource to release system resources associated with
the Scanner and PrintWriter objects.

• Create a directory in your weekly programming repository ,
and the directory’s name match the exercise number.

• Revise the class to release resources in the finally block

• In ReplaceText, we declare the main(String[] args) method to
throw Exception. Revise the program so that exceptions are
handled in the main method by using the catch clause.

• However, you catch as specific type exception as you can.

• Use git to make a submission

10/11/2018 CUNY | Brooklyn College 34

Exercise C17a-2

• This is question 12.11 in chapter 12 of the textbook. Write a program
that removes all the occurrences of a specified string from a text
file. For example, invoking

Java ExerciseC17a2 john filename.txt

removes the string john from the filename.txt file.

• Create a directory in your weekly programming repository , and the directory’s
name match the exercise number.

• Use the ReplaceText example program as a start

• In ReplaceText, we declare the main(String[] args) method to throw
Exception. Revise the program so that exceptions are handled in the main
method by using the catch clause.

• However, you catch as specific type exception as you can.

• Use git to make a submission

10/11/2018 CUNY | Brooklyn College 35

