CISC 3115 TY3
Cl4a: Call Stack, Finally, and

Rethrowing Exceptions

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College



Outline

+ Discussed
« Error and error handling
«  Two approaches
« Exception
* The throwable class hierarchy
+ System errors and semantics
* Runtime exceptions and semantics
* Checked errors and semantics
« Declaring, throwing, and catching exception
» Exception, call stack, and stack trace
* The finally clause
* Rethrowing exceptions

+ Custom exceptions

« Simple character File I/0



Exception and Call Stack

main method {
try {
invoke methodl;

statementl;

}
catch (Exceptionl exl)

Process exl;

}

statement?2;

~

{

/ methodl {

try {
invoke method2;

statement3;

}
catch (Exception2 ex2)

Process ex2;

}

/

j method2 {

try {

statement5;
}
{ catch
Process ex3;

}
statement6;

invoke method3 ;/

(Exception3 ex3) {

/

Call Stack

main method

statement4;
} }
method3
method?2 method?2
methodl methodl methodl
main method main method main method

An exception
is thrown in
method3

Stack
~ frames




Example: Call Stack and Stack
Trace

MINGWE4:/c/Users/hui/work/course/CISC3115/SamplePrograms/Cl4aException/stacktrace — O X

~/work/course/CISC3115/SamplePrograms/Cl4aeException/sta
cktrace (master)
$ javac StackTraceDemo.java

~/work/course/CISC3115/SamplePrograms/Cl4aException/sta
cktrace (master)
$ 1s
Course.class StackTraceDemo.class Student.class
Course. java StackTraceDemo. java Student. java

~/work/course/CISC3115/SamplePrograms/Cl4aException/sta

cktrace (master)
$ java StackTraceDemo
Exception in thread "main" java.lang.IllegalStateException: No way to compute GP
A if no courses.

at Student.getGPA(Student.java:3)

at Course.addstudent(Course.java:12)

at StackTraceDemo.doSth(StackTraceDemo.java:10)

at StackTraceDemo.main(StackTraceDemo.java:4)

~/work/course/CISC3115/SamplePrograms/Cl4aeException/sta

cﬁtrace (master)
3




Questions

» Concept of call stack and stack frame

» Exception and stack trace



Rethrowing Exception

try {
statements;

}
catch(TheException ex) {

perform operations before exits;
throw ex, %Ee’rhrowing the TheException exception.

}



Questions?

 Understand the concept of rethrowing an
exception.



The finally Clause

* The try..catch... can have a finally clause

try {
statements;

}

catch(TheException ex) {
handling ex;

}

finally {
finalStatements;

}



Questions?

* When is the finally-block being excuted?



Exceptions are for Exceptional
Conditions

* Exception handling usually requires time and
resources because it requires

* instantiating a new exception object,
* rolling back the call stack, and

* propagating the errors to the calling methods.



Some Best Practices

* Do throw specific Exceptions

throw new RunTimeException("Exception at runtime");

* Throw early, catch late.

handle the exception poorly.

X

* better to throw a checked exception than to

 Use exception only for exception situations

if (args.length |= 3) {
System.out.printin(*Usage ..");
}

try {
d1 = Integer.parseInt(args[2]);

} catch (ArrayIndexOutOfBoundsException e) {
System.out.printin(*Usage ..");

}

10/11/2018

CUNY | Brooklyn College

X

11



Questions

» Exceptions are expensive, and are for
exceptional conditions.

» Exceptions are commonly used for
diaghosing problems in the programs, be
specific!

 Exceptions are not abnormal. Organize your
code.



