
CISC 3115 TY3

C14a: Call Stack, Finally, and
Rethrowing Exceptions

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

10/11/2018 1CUNY | Brooklyn College

Outline

• Discussed

• Error and error handling

• Two approaches

• Exception

• The throwable class hierarchy

• System errors and semantics

• Runtime exceptions and semantics

• Checked errors and semantics

• Declaring, throwing, and catching exception

• Exception, call stack, and stack trace

• The finally clause

• Rethrowing exceptions

• Custom exceptions

• Simple character File I/O

10/11/2018 CUNY | Brooklyn College 2

Exception and Call Stack

10/11/2018 CUNY | Brooklyn College 3

main method {

 ...

 try {

 ...

 invoke method1;

 statement1;

 }

 catch (Exception1 ex1) {

 Process ex1;

 }

 statement2;

}

method1 {

 ...

 try {

 ...

 invoke method2;

 statement3;

 }

 catch (Exception2 ex2) {

 Process ex2;

 }

 statement4;

}

method2 {

 ...

 try {

 ...

 invoke method3;

 statement5;

 }

 catch (Exception3 ex3) {

 Process ex3;

 }

 statement6;

}

An exception

is thrown in

method3

Call Stack

main method main method

method1

main method

method1

main method

method1

method2 method2

method3

Stack
frames

Example: Call Stack and Stack
Trace

10/11/2018 CUNY | Brooklyn College 4

Questions

• Concept of call stack and stack frame

• Exception and stack trace

10/11/2018 CUNY | Brooklyn College 5

Rethrowing Exception

try {

statements;

}

catch(TheException ex) {

perform operations before exits;

throw ex;

}

10/11/2018 CUNY | Brooklyn College 6

Rethrowing the TheException exception.

Questions?

• Understand the concept of rethrowing an
exception.

10/11/2018 CUNY | Brooklyn College 7

The finally Clause

• The try…catch… can have a finally clause

try {

statements;

}

catch(TheException ex) {

handling ex;

}

finally {

finalStatements;

}

10/11/2018 CUNY | Brooklyn College 8

Questions?

• When is the finally-block being excuted?

10/11/2018 CUNY | Brooklyn College 9

Exceptions are for Exceptional
Conditions
• Exception handling usually requires time and

resources because it requires

• instantiating a new exception object,

• rolling back the call stack, and

• propagating the errors to the calling methods.

10/11/2018 CUNY | Brooklyn College 10

Some Best Practices

• Do throw specific Exceptions

• Throw early, catch late.

• better to throw a checked exception than to
handle the exception poorly.

• Use exception only for exception situations

10/11/2018 CUNY | Brooklyn College 11

throw new RunTimeException(“Exception at runtime”);

if (args.length != 3) {
System.out.println(“Usage …”);

}

try {
d1 = Integer.parseInt(args[2]);

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println(“Usage …”);

}

Questions

• Exceptions are expensive, and are for
exceptional conditions.

• Exceptions are commonly used for
diagnosing problems in the programs, be
specific!

• Exceptions are not abnormal. Organize your
code.

10/11/2018 CUNY | Brooklyn College 12

