
CISC 3115 TY3

C09a: Inheritance
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

9/20/2018 1CUNY | Brooklyn College

Outline

• Inheritance

• Superclass/supertype, subclass/subtype

• Inheritance and constructors in Java

• Inheritance and instance methods in Java

• The Object class in Java

9/20/2018 CUNY | Brooklyn College 2

Class and Type

• A class defines a type, and often models a
set of entities

• Example: to build a system for managing
business at Brooklyn College, we consider

• People, a set of individuals (objects), modeled as
a class that captures the essence of the set of
objects

2/26/2018 CUNY | Brooklyn College 3

People at Brooklyn College

Subtypes

• Some people at Brooklyn are different from
the others in some way

• Professors and students are subtypes of
Brooklyn College People

2/26/2018 CUNY | Brooklyn College 4

People at Brooklyn College

Professors Students

Type Hierarchy

• Characteristics and behavior

• What are Students and Professors in common?

• What are Students and Professors different?

2/26/2018 CUNY | Brooklyn College 5

People at Brooklyn
College

Professors Students

What’s in Common?

• What characteristics (attributes) and
behavior (actions) do People at Brooklyn
College have in common?

• Characteristics (attributes, fields, or states):
name, ID, address, email, phone, …

• Behavior (actions, functions, or methods): change
address, apply parking, …

2/26/2018 CUNY | Brooklyn College 6

What’s Special?

• What’s distinct about students?

• Characteristics (attributes, fields, or states): classes
taken, tuition and fees, …

• Behavior (actions, functions, or methods): add class,
drop class, pay tuition, …

• What’s distinct about professors?

• Characteristics (attributes, fields, or states): course
taught, rank, title, …

• Behavior (actions, functions, or methods): register
grade, apply promotion, …

2/26/2018 CUNY | Brooklyn College 7

Inheritance & Type Hierarchy

• A subtype (child) inherits characteristics
(data fields & methods) and behavior
(actions) of its super/base type (parent)

2/26/2018 CUNY | Brooklyn College 8

People at Brooklyn
College

Professors Students

- Name, ID, address,
phone, …

- Change address,
apply parking …

- Class taken, …
- Add class, …

- Class taught, …
- Register grades, …

Terms of Choice

• Terms

• Super type, Super class

• Base type, Base class

• Parent type, parent class

• Child type, child class

• Subtype, subclass

• …

• In Java, we sometimes consider “type” and “class” are slightly
different

• In Java, a pure abstract class is called an “interface” (to be
discussed in the future)

2/26/2018 CUNY | Brooklyn College 9

Example: Realizing the Type
Hierarchy
• Classes: Person, Student, Professor

9/20/2018 CUNY | Brooklyn College 10

People at Brooklyn
College

Professors Students

- Name, ID, address,
phone, …

- Change address,
apply parking …

- Class taken, …
- Add class, …

- Class taught, …
- Register grades, …

Super Type (Super Class):
Person
public class Person {

private String name;

private String id;

private String address;

public Person(String name, String id, String address) {

this.name = name; this.id = id; …

}

public void changeAddress(String address) { … }

… }

2/26/2018 CUNY | Brooklyn College 11

Subtype (Subclass): Student

public class Student extends Person {

public final static int MAX_NUM_COURSES = 10;

private String[] classesTaken;

public Student(String name, String id, String address) {

...... // initializing inherited data fields

classesTaken = new String[MAX_NUM_COURSES];

}

public void haveTakenClass(String className) { … }

public void showClassesTaken() { … }

…}

2/26/2018 CUNY | Brooklyn College 12

Subtype (Subclass): Professor

public class Professor extends Person {

public final static int SABATTICAL_LEAVE_INTERVAL = 7;

private int yearStarted;

public Professor(String name, String id, String address, int yearStarted) {

...... // initializing inherited data fields

this.yearStarted = yearStarted;

}

public void applySabbatical(int applicationYear) { …

}

…}

2/26/2018 CUNY | Brooklyn College 13

Questions

• Concepts

• Type, subtype, class, subclass

• Inheritance

2/26/2018 CUNY | Brooklyn College 14

UML Diagram and Type
Hierarchy
• UML diagram for

showing class
hierarchy

• Example:
GeometricObject,
Circle, Rectangle

9/20/2018 CUNY | Brooklyn College 15

GeometricObject

-color: String

-filled: boolean

-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,

filled: boolean)

+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled

values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,

filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getArea(): double

+getPerimeter(): double

+getDiameter(): double

+printCircle(): void

Rectangle

-width: double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double

color: String, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

+getArea(): double

+getPerimeter(): double

Constructors

• Let us consider

• Circle c = new Circle();

• Are superclass’s constructor inherited?

• No. They are not inherited.

• They are invoked explicitly or implicitly.

• Explicitly using the super keyword.

9/20/2018 CUNY | Brooklyn College 16

Constructors

• Let us consider

Circle c = new Circle();

• Are superclass’s
Constructor
Inherited?

• In other words, how
are the data fields
initialized?

9/20/2018 CUNY | Brooklyn College 17

GeometricObject

-color: String

-filled: boolean

-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,

filled: boolean)

+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled

values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,

filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getArea(): double

+getPerimeter(): double

+getDiameter(): double

+printCircle(): void

Rectangle

-width: double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double

color: String, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

+getArea(): double

+getPerimeter(): double

Constructors in Super- and Sub-
Classes
• Are superclass’s Constructor Inherited?

• No. They are not inherited, but one is always
invoked

• They are invoked explicitly or implicitly.

• Explicitly using the super keyword

• Implicitly the superclass's no-arg constructor is
automatically invoked if the keyword super is
not explicitly used.

9/20/2018 CUNY | Brooklyn College 18

Implicit Invocation of
Superclass’s Constructor
• A superclass’s constructor is always invoked

even if it isn’t invoked explicitly using super.

• Which constructor is invoked implicitly?

9/20/2018 CUNY | Brooklyn College 19

public A(double d) {

 // some statements

}

is equivalent to

public A(double d) {

 super();

 // some statements

}

public A() {

}

is equivalent to

public A() {

 super();

}

Explicit Invocation of
Superclass’s Methods
• super refers to the superclass

• Use it

• To call a superclass constructor

• Java requires that the statement that uses the
keyword super appear first in the constructor.

• To call a superclass method

9/20/2018 CUNY | Brooklyn College 20

Constructor Chaining

• Invocation of superclass’s constructor (along
the inheritance chain)

• Example

• Consider classes: Person, Employee, Faculty

9/20/2018 CUNY | Brooklyn College 21

Person

Employee

Faculty

Constructor Chaining: Example

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is
invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is
invoked");

}

class Employee(String s) {

System.out.println(s);

}

}

class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor
is invoked");

}

}

9/20/2018 CUNY | Brooklyn College 22

Discussion: No-Arg Constructor

• Is there an error in the code below, and why?

public class Apple extends Fruit {

}

public class Fruit {

public Fruit(String name) {

System.out.println("Fruit's constructor is invoked");

}

}

9/20/2018 CUNY | Brooklyn College 23

Questions?

• Constructors in superclass

• Explicit and implicit invocation

• Constructor chaining

9/20/2018 CUNY | Brooklyn College 24

Defining a Subclass

• A subclass inherits from a superclass.

• One can also:

• Add new properties

• Add new methods

• Override the methods of the superclass

9/20/2018 CUNY | Brooklyn College 25

Overriding Methods in
Superclass
• Modify the implementation of a method defined in the

superclass

public class Circle extends GeometricObject {

// Other methods are omitted

/** Override the toString method defined in
GeometricObject */

public String toString() {

return super.toString() + "\nradius is " + radius;

}

}

9/20/2018 CUNY | Brooklyn College 26

Invoking Superclass’s Instance
Method
• Example

• One could rewrite the printCircle() method in
the Circle class as follows:

public void printCircle() {

System.out.println("The circle is created " +

super.getDateCreated() + " and the radius is " +
radius);

}

9/20/2018 CUNY | Brooklyn College 27

Discussion: Method Overriding

• Can you override a private method in the
superclass?

9/20/2018 CUNY | Brooklyn College 28

Discussion: Method Overriding

• Can you override a private method in the superclass?

• No

• An instance method can be overridden only if it is
accessible.

• A private method is not accessible outside its own class.

• A private method in the superclass can only be
accessible in the superclass itself, is inaccessible in the
subclass.

• Thus a private method cannot be overridden.

9/20/2018 CUNY | Brooklyn College 29

Discussion: Unrelated Methods

• Can you have a method whose signature is
identical to a private method in the
superclass?

9/20/2018 CUNY | Brooklyn College 30

Discussion: Unrelated Methods

• Can you have a method whose signature is
identical to a private method in the
superclass?

• Yes

• However, this isn’t method overriding. The
two methods are unrelated, but happen to
have the identical name.

9/20/2018 CUNY | Brooklyn College 31

Discussion: Static Method

• Like an instance method, a static method can
be inherited.

• However, a static method cannot be
overridden.

• If a static method defined in the superclass
is redefined in a subclass, the method
defined in the superclass is hidden.

9/20/2018 CUNY | Brooklyn College 32

Overriding vs. Overloading

• Overriding is to redefine the method with
the identical signature in the superclass

9/20/2018 CUNY | Brooklyn College 33

 public class Test {

 public static void main(String[] args) {

 A a = new A();

 a.p(10);

 a.p(10.0);

 }

}

class B {

 public void p(double i) {

 System.out.println(i * 2);

 }

}

class A extends B {

 // This method overrides the method in B

 public void p(double i) {

 System.out.println(i);

 }

}

public class Test {

 public static void main(String[] args) {

 A a = new A();

 a.p(10);

 a.p(10.0);

 }

}

class B {

 public void p(double i) {

 System.out.println(i * 2);

 }

}

class A extends B {

 // This method overloads the method in B

 public void p(int i) {

 System.out.println(i);

 }

}

Two methods with identical name but different signature

Questions?

• Defining subclasses

• A few topics

• Invoking superclass’s methods (constructors and
instance methods)

• Overriding

• Overriding and overloading

9/20/2018 CUNY | Brooklyn College 34

Codelab Exercise

• Codelab exercises
marked as due by
10/04/2018

9/20/2018 CUNY | Brooklyn College 35

In-Class Exercise C09a-1

• Listings 11.1 - 11.3 in the textbook define 3 classes:
GeometricObject, Circle, and Rectangle. In this exercise you
are to add two classes to the hierarchy, Triangle and
EquilateralTriangle, and write a client class to use the Triangle
and EquilateralTriangle classes.

• Create a C09a-1 directory in the directory that hosts your weekly
programming repository, work at the directory

• The Triangle class is a subclass to GeometricObject, and the
EquilateralTriangle isa subclass to Triangle. An EquilateralTriangle is
a triangles whose sides are equal.

• Your submission should include 6 files (6 classes):
GeometricObject.java, Circle.java, Rectangle.java, Triangle.java,
EquilateralTriangle, and TriangleClient.java

• Use git to make a submission

9/20/2018 CUNY | Brooklyn College 36

https://github.com/CISC3115TY3FA18/SamplePrograms/tree/master/C09aInheritance/SuperSubclasses

