
CISC 3115 TY3

C08b: Class Relationships
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

9/20/2018 1CUNY | Brooklyn College

Outline

• Discussed

• Concepts of two programming paradigms

• Procedural and Object-Oriented

• Design classes for problem solving

• Think in terms of class

• Discover relationship of classes

• A few classes in Java API

• Java wrapper classes for primitive values

• BigInteger, BigDecimal

• String, StringBuilder, StringBuffer

9/20/2018 2CUNY | Brooklyn College

Relationship of Classes

• To analyze the problem and design classes,
we need to explore the relationships among
classes (and objects of the classes).

• Association

• Aggregation

• Composition

• Inheritance (to be discussed in Chapter 13)

9/20/2018 CUNY | Brooklyn College 3

Association

• A general binary relationship that describes
an activity between two classes

• UML diagram

• Consider 3 classes, Student, Course, and Faculty

9/20/2018 CUNY | Brooklyn College 4

Association: UML notation

• Role

• Take, Teach; arrow indicates “subject” & “object” in English

• Multiplicity

• A course has 5 ~ 60 students (5..60)

• A student takes any number of courses (*)

• A faculty teaches 0 ~ 3 courses (0..3)

• A course has 1 faculty (1)

9/20/2018 CUNY | Brooklyn College 5

Class Representation:
Association
• Using data fields and methods

9/20/2018 CUNY | Brooklyn College 6

public class Student {

private Course[] courseList;

public void addCourse(Course c) {

}

}

public class Course {

private Student[] studentList;

private Faculty faculty;

public void addStudent(Student s) {

}

public void setFaculty(Faculty f) {

}

}

public class Faculty {

private Course[] courseList;

public void addCourse(Course c) {

}

}

Aggregation

• A special form of association that
represents an ownership relationship
between two objects

• It models a has-a relationship

• Owner object/class: aggregating object/class

• Subject object/class: aggregated object/class

• UML diagram

• Consider 2 classes, Student and Address

9/20/2018 CUNY | Brooklyn College 7

Student Address
1..3 1

Composition

• A special case of the aggregation relationship where
the existence of the aggregated object is
dependent on the aggregating object (i.e.,
aggregated object does not exist by itself)

• UML diagram

• Consider 3 classes, Name, Student, and Address

9/20/2018 CUNY | Brooklyn College 8

Name Address Student

Composition Aggregation

1..3 1 1 1

Class Representation:
Aggregation and Composition
• An aggregation relationship is usually represented

as a data field in the aggregating class.

9/20/2018 CUNY | Brooklyn College 9

public class Name {

 ...

}

public class Student {

 private Name name;

 private Address address;

 ...

}

public class Address {

 ...

}

Aggregated class Aggregating class Aggregated class

Name Address Student

Composition Aggregation

1..3 1 1 1

Aggregation or Composition

• Aggregation and composition relationships
are represented using classes in similar
ways, many texts do not differentiate them
and call both compositions.

9/20/2018 CUNY | Brooklyn College 10

Aggregation Between Same
Class
• Aggregation may exist between objects of

the same class.

• Example

• A person may have a supervisor who is also a
person.

9/20/2018 CUNY | Brooklyn College 11

Self-Aggregation: UML Diagram
and Class Representation
• UML diagram

• Class representation

9/20/2018 CUNY | Brooklyn College 12

Person

Supervisor

1

1

public class Person {
// The type for the data is the class itself
private Person supervisor;
...

}

Person

Supervisor

1

m

public class Person {
// The type for the data is the class itself
private Person[] supervisors;
...

}

Example: The Course Class

9/20/2018 CUNY | Brooklyn College 13

Course

-courseName: String

-students: String[]

-numberOfStudents: int

+Course(courseName: String)

+getCourseName(): String

+addStudent(student: String): void

+dropStudent(student: String): void

+getStudents(): String[]

+getNumberOfStudents(): int

The name of the course.

An array to store the students for the course.

The number of students (default: 0).

Creates a course with the specified name.

Returns the course name.

Adds a new student to the course.

Drops a student from the course.

Returns the students in the course.

Returns the number of students in the course.

Example: Designing The
StackOfInteger Class
• A stack is a data structure that holds data

in a last-in, first-out fashion

9/20/2018 CUNY | Brooklyn College 14

Example: The StackOfInteger
Class

9/20/2018 CUNY | Brooklyn College 15

StackOfIntegers

-elements: int[]

-size: int

+StackOfIntegers()

+StackOfIntegers(capacity: int)

+empty(): boolean

+peek(): int

+push(value: int): int

+pop(): int

+getSize(): int

An array to store integers in the stack.

The number of integers in the stack.

Constructs an empty stack with a default capacity of 16.

Constructs an empty stack with a specified capacity.

Returns true if the stack is empty.

Returns the integer at the top of the stack without

removing it from the stack.

Stores an integer into the top of the stack.

Removes the integer at the top of the stack and returns it.

Returns the number of elements in the stack.

Example: Implementing the
StackOfInteger Class

9/20/2018 CUNY | Brooklyn College 16

Questions?

• Relationship among classes

• Association

• Aggregation

• Composition

• Inheritance (to be discussed in Chapter 13)

• How to represent the relationship using
classes/objects?

9/20/2018 CUNY | Brooklyn College 17

