CISC 3115 TY3
CO8b: Class Relationships

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Outline

* Discussed
* Concepts of two programming paradigms
* Procedural and Object-Oriented
» Design classes for problem solving
 Think in terms of class

» Discover relationship of classes
A few classes in Java APT

« Java wrapper classes for primitive values
 BigInteger, BigDecimal
* String, StringBuilder, StringBuffer

Relationship of Classes

* To analyze the problem and design classes,
we heed to explore the relationships among
classes (and objects of the classes).

* Association

* Aggregation

* Composition

* Inheritance (to be discussed in Chapter 13)

Association

* A general binary relationship that describes
an activity between two classes

« UML diagram

* Consider 3 classes, Student, Course, and Faculty

Take p Teach <

0.3

) 9-.60 « 1
Course | Faculty I

Student |

Teacher

9/20/2018 CUNY | Brooklyn College 4

Association: UML notation

Take p Teach
) 5..60 . y 0.3 1
Student | Course | Faculty
Teacher
* Role

« Take, Teach; arrow indicates "subject” & "object” in English
 Multiplicity

« A course has 5 ~ 60 students (5..60)

* A student takes any number of courses (*)

* A faculty teaches O ~ 3 courses (0..3)

« A course has 1 faculty (1)

9/20/2018 CUNY | Brooklyn College 5

Class Representation:
Association
« Using data fields and methods

Take p Teach
5,60) 0.3 |
Student | Course | Faculty
Teacher
public class Student { public class Course { public class Faculty {
private Course[] courselist; private Student[] studentList; private Course[] courseList;
public void addCourse(Course c){ private Faculty faculty; public void addCourse(Course c) {
} public void addStudent(Student s){ }
} } }
public void setFaculty(Faculty f) {
}
}

9/20/2018 CUNY | Brooklyn College 6

Aggregation

* A special form of association that
represents an ownership relationship
between two objects

It models a has-a relationship
» Owner object/class: aggregating object/class
» Subject object/class: aggregated object/class

« UML diagram
* Consider 2 classes, Student and Address

student 17 Address

9/20/2018 CUNY | Brooklyn College

Composition

* A special case of the aggregation relationship where
the existence of the aggregated object is
dependent on the aggregating object (i.e.,
aggregated object does not exist by itself)

« UML diagram

« Consider 3 classes, Name, Student, and Address

Composition Aggregation

N A

Name ‘| Student O Address

Class Representation:
Aggregation and Composition

* An aggregation relationship is usually represented
as a data field in the aggregating class.

Name

Composition

N

Aggregation

Address

/\
‘| Student 9

public class Name ({

}

public class Student {
private Name name;

private Address address;

public class Address {

}

Aggregated class

Aggregating class

Aggregated class

Aggregation or Composition

* Aggregation and composition relationships
are represented using classes in similar
ways, many texts do not differentiate them
and call both compositions.

Aggregation Between Same
Class

» Aggregation may exist between objects of
the same class.

« Example

* A person may have a supervisor who is also a
person.

Self-Aggregation: UML Diagram
and Class Representation
« UML diagram

1 1
Person Q Person ()

. Supervisor . Supervisor

* Class representation

public class Person { public class Person {

=

// The type for the data is the class itself //.The type for the dGTG is the class itself
private Person supervisor; private Person[] supervisors;

=

Example: The Course Class

Course

—courseName: String
-students:

-numberOfStudents:

String/[]

int

+Course (courseName: String)

+getCourseName () : String
+addStudent (student:
+dropStudent (student:
+getStudents () : String/[]

+getNumberOfStudents () :

String) :
String) :

int

void

void

The name of the course.
An array to store the students for the course.
The number of students (default: 0).

Creates a course with the specified name.
Returns the course name.

Adds a new student to the course.

Drops a student from the course.

Returns the students in the course.

Returns the number of students in the course.

Example: Designhing The
StackOfInteger Class

* A stack is a data structure that holds data
in a last-in, first-out fashion

Datalffrﬁw\ Data2 —— Data3 ——
|

\ \
Data3
Data? Data?
Datal Datal Datal

Data3 N Data? 4,__\ Datal*——“\

Data?
Datal Datal

Example: The StackOfInteger
Class

StackOfIntegers
-elements: int[] An array to store integers in the stack.
-size: int The number of integers in the stack.
+StackOflIntegers() Constructs an empty stack with a default capacity of 16.
+StackOfIntegers(capacity: int) | Constructs an empty stack with a specified capacity.
+empty(): boolean Returns true if the stack is empty.
+peek(): int Returns the integer at the top of the stack without

removing it from the stack.

+push(value: int): int Stores an integer into the top of the stack.
+pop(): int Removes the integer at the top of the stack and returns it.
+getSize(): int Returns the number of elements in the stack.

Example: Implementing the
StackOfInteger Class

elements[capacity — 1]

elements[size — 1]

elements[1]
elements[0]

9/20/2018

top

< SiZe

bottom a

CUNY | Brooklyn College

<——— capacity

16

Questions?

* Relationship among classes
* Association
* Aggregation
* Composition
* Inheritance (to be discussed in Chapter 13)

* How to represent the relationship using
classes/objects?

