
CISC 3115 TY3

C08a: Object-Oriented
Thinking

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

9/20/2018 1CUNY | Brooklyn College

Outline

• Discussed

• How to define classes, create objects, and use objects

• Concepts of two programming paradigms

• Procedural and Object-Oriented

• Design classes for problem solving

• Think in terms of class

• Discover relationship of classes

• A few classes in Java API

• Java wrapper classes for primitive values

• BigInteger, BigDecimal

• String, StringBuilder, StringBuffer

9/20/2018 2CUNY | Brooklyn College

Procedural Approach

• “The proposed solution is decomposed by breaking it
into a sequence of tasks. These tasks form the
basic building blocks for a procedural application.”
[Korson & McGrego, 1990]

• First, the designer needs to identify a possible solution.

• The solution is decomposed into logical modules and
submodules, e.g., methods (that we further decompose into
steps with sequences of actions, loops, and branches)

• The execution of tasks can be easily traced from start to
finish once the solution is implemented.

• Task-centric

9/20/2018 3CUNY | Brooklyn College

https://dl.acm.org/citation.cfm?id=84459

Object-Oriented Approach

• “The object oriented paradigm assumes a modeling point of view. The
model is constructed by viewing the problem domain as a set of
interacting entities and the relationships between them." [Korson &
McGrego, 1990]

• First, the designer needs to analyze the problem, and decompose the problem
domain into interacting entities and their relationships.

• Entities are modeled by designing classes to represent them and then using
these classes to instantiate objects.

• Data-centric, embodies procedural approach

• Couples data and methods into objects

• What are we dealing with?

• What can be done with it?

• Designs methods

• How should it be done?

9/20/2018 4CUNY | Brooklyn College

https://dl.acm.org/citation.cfm?id=84459

Class Abstraction

• Separate class implementation from the use of the class.

• Focus on “reuse”. Two roles, creators and users.

• The creator of the class provides a description of the class and let
the user know how the class can be used.

• The user of the class does not need to know how the class is
implemented.

• To use the class, the users need to know,

• What are we dealing with?

• What can be done with it?

• To implement the class, the creators need to know additionally,

• How is it done?

9/20/2018 5CUNY | Brooklyn College

Encapsulation

• The detail of implementation of a class is encapsulated and
hidden from the user.

• The user only needs to know the class contract

• Class contract: signatures of public methods and constants
(what are we dealing with? what can be done with it?)

• The user’s classes/objects (clients) interact with it via its
contract. (invoking method  passing messages)

9/20/2018 6

Class Contract

(Signatures of

public methods and

public constants)

Class

Class implementation

is like a black box

hidden from the clients

Clients use the

class through the

contract of the class

CUNY | Brooklyn College

Designing the Loan Class

• The designer’s first concern is the class’s
contract

9/20/2018 CUNY | Brooklyn College 7

The Design of The Loan Class

• “-”

• Private

• “+”

• public

9/20/2018 CUNY | Brooklyn College 8

Loan

-annualInterestRate: double

-numberOfYears: int

-loanAmount: double

-loanDate: Date

+Loan()

+Loan(annualInterestRate: double,

numberOfYears: int,

loanAmount: double)

+getAnnualInterestRate(): double

+getNumberOfYears(): int

+getLoanAmount(): double

+getLoanDate(): Date

+setAnnualInterestRate(

 annualInterestRate: double): void

+setNumberOfYears(

 numberOfYears: int): void

+setLoanAmount(

 loanAmount: double): void

+getMonthlyPayment(): double

+getTotalPayment(): double

The annual interest rate of the loan (default: 2.5).

The number of years for the loan (default: 1)

The loan amount (default: 1000).

The date this loan was created.

Constructs a default Loan object.

Constructs a loan with specified interest rate, years, and

loan amount.

Returns the annual interest rate of this loan.

Returns the number of the years of this loan.

Returns the amount of this loan.

Returns the date of the creation of this loan.

Sets a new annual interest rate to this loan.

Sets a new number of years to this loan.

Sets a new amount to this loan.

Returns the monthly payment of this loan.

Returns the total payment of this loan.

Data: what are
we dealing with?

Methods: what
can be done with
it?

As the User …

• Can you develop a client class to use the Loan class?

• Example

• Problem: A borrower enters the information about the
loan, i.e., annual interest rate, term (or the number of
years), the amount borrowed (or the principal), what will
be the monthly payment and the total payment?

• Solution: Develop a TestLoan.java program as a client to
the Loan class (without knowing the implementation detail
of the Loan class).

• Can you do it?

9/20/2018 CUNY | Brooklyn College 9

TestLoan.java

9/20/2018 CUNY | Brooklyn College 10

As the Creator …

• First, analyze and design

• What should be the data fields?

• What should be the public methods? How should
client classes/objects interact with the object of
this class?

• In order to be useful in a wide range of applications,
the class should provide a variety of ways for clients
to interact with (e.g., public constructors and
methods)

• Second, design and implement

• How should the public methods be implemented?

9/20/2018 CUNY | Brooklyn College 11

Questions?

• A comparison of procedural and object-
oriented approach

• Class abstraction and encapsulation

• Develop client classes

9/20/2018 CUNY | Brooklyn College 12

The BMI Class

• Procedural approach

• Section 3.8 in the
textbook

• ComputeAndInterpr
etBMI.java

• Analyze and
redesign with the
Object-Oriented
approach

• Section 10.3 in the
textbook

• BMI.java

• BMIClient.java

9/20/2018 CUNY | Brooklyn College 13

The BMI Class

9/20/2018 CUNY | Brooklyn College 14

BMI

-name: String

-age: int

-weight: double

-height: double

+BMI(name: String, age: int, weight:

double, height: double)

+BMI(name: String, weight: double,

height: double)

+getBMI(): double

+getStatus(): String

The name of the person.

The age of the person.

The weight of the person in pounds.

The height of the person in inches.

Creates a BMI object with the specified

name, age, weight, and height.

Creates a BMI object with the specified

name, weight, height, and a default age

20.

Returns the BMI

Returns the BMI status (e.g., normal,

overweight, etc.)

The get methods for these data fields are

provided in the class, but omitted in the

UML diagram for brevity.

Questions?

• Procedural approach

• Focusing on designing methods

• Object-Oriented approach

• Coupling data and methods together into objects

• Data: what data are we dealing with?

• Operations: what can be done to/with the data?

• Additionally, how should the operations be done? (procedural paradigm)

• Combining the power of the procedural paradigm with an added
dimension that integrates data with operations into objects

• Data and operation in objects

• Mirroring the real world

9/20/2018 CUNY | Brooklyn College 15

In-Class Exercise C08a-1

• Section 3.9 of the textbook presents a program that
computes the U.S. federal income tax with the
procedural approach. In this exercise, you shall use the
Object-Oriented approach to design a
FederalIncomeTax class, and use the class in a client
class called FederalIncomeTaxClient.

• Create a C08a-1 directory in the directory that hosts your
weekly programming repository, work at the directory

• Examine the ComputeTax.java from Section 3.9, and design
the FederalIncomeTax class with care.

• Your submission should include two files,
FederalIncomeTax.java and FederalIncomeTaxClient.java

• Use git to make a submission

9/20/2018 CUNY | Brooklyn College 16

https://github.com/CISC3115TY3FA18/SamplePrograms/tree/master/C08aThinkingInObjects/Tax

