
CISC 3115 TY3

C06a: Visibility Modifiers 
and Data Encapsulation

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

9/13/2018 1CUNY | Brooklyn College



Outline

• Concept of Java packages

• Visibility modifiers

• public, private, and no modifiers

• Data encapsulation

9/13/2018 CUNY | Brooklyn College 2



Java Packages

• Programmers use packages to organize Jave
classes

• By bundling classes into packages

• Why packages?

• To make types easier to find and use

• What if you created 1,000 classes? 

• To avoid naming conflicts

• You may want to have two “Student” classes

• To control access

9/13/2018 CUNY | Brooklyn College 3



Creating Package

• Use the “package” statement as the first non-
comment and non-blank statement in the 
program

• Syntax

package packagename

• Examples

• package project1

• package cisc3115.project1

• package edu.cuny.brooklyn.cis.cisc3115.project1 

9/13/2018 CUNY | Brooklyn College 4



Package Naming Convention

• Package names are written in all lower case 
to avoid conflict with the names of classes 
or interfaces.

9/13/2018 CUNY | Brooklyn College 5



Unnamed Package

• If you do not use a package statement, your 
type (e.g., class) is in an unnamed package.

• Generally speaking, an unnamed package is 
only for small or temporary applications or 
when you are just beginning the development 
process. 

9/13/2018 CUNY | Brooklyn College 6



Package: Example

Unamed package

class Circle {

double radius;

}

Named package

package cisc3115

class Circle {

double radius;

}

9/13/2018 CUNY | Brooklyn College 7



Using Package Members

• Refer to the member by its fully qualified 
name

• Import the package member

• Import the member's entire package

9/13/2018 CUNY | Brooklyn College 8



Fully Qualified Name
• Fully qualified name

• Syntax

packagename.typename

• Example

package cisc3115

class Circle {

double radius;

}

9/13/2018 CUNY | Brooklyn College 9

class TestCircle {
public static void main(String[] args) {

cisc3115.Circle c1 = new Circle();
// …

}
}



Import Package Member
• To import a specific member into the current file, Use an 

import statement at the beginning of the file before any 
type (e.g., class) definitions but after the package 
statement, if there is one.

• Syntax

import packagename.PackageMember

• Example

package cisc3115.shapes

class Circle {

double radius;

}

class Square {

double length;

}

9/13/2018 CUNY | Brooklyn College 10

import cisc3115.shapes.Circle;
import cisc3115.shapes.Square;
class TestShapes {

public static void main(String[] args) {
Circle c1 = new Circle();
Square s1 = new Square();

}
}



Import Entire Package

• To import a specific member into the current file, Use an 
import statement at the beginning of the file before any 
type (e.g., class) definitions but after the package 
statement, if there is one.

• Syntax

import packagename.*

• Example

package cisc3115.shapes

class Circle {

double radius;

}

class Square {

double length;

}

9/13/2018 CUNY | Brooklyn College 11

import cisc3115.shapes.*;

class TestShapes {
public static void main(String[] args) {

Circle c1 = new Circle();
Square s1 = new Square();

}
}



Apparent Hierarchies of 
Packages
• Packages appear to be hierarchical from the 

naming perspective, but they are not from
“importing” perspective

9/13/2018 CUNY | Brooklyn College 12

package cisc3115.shapes

class Circle {

double radius;

}

package cisc3115

class Student {

String name;

}
• Example

• cisc3115 and 
cisc3115.shapes are two 
packages when you 
import them.



Apparent Hierarchies of 
Packages: Exercise

9/13/2018 CUNY | Brooklyn College 13

package cisc3115.shapes

class Circle {

double radius;

}

package cisc3115

class Student {

String name;

}

• cisc3115 and cisc3115.shapes are two 
packages when you import them.

• Question: right or 
wrong?

import cisc3115.*;

class TestShapes {
public static void main(String[] args) {

Circle c1 = new Circle();
}

}



Apparent Hierarchies of 
Packages: Exercise: Answer

9/13/2018 CUNY | Brooklyn College 14

package cisc3115.shapes

class Circle {

double radius;

}

package cisc3115

class Student {

String name;

}

• cisc3115 and cisc3115.shapes are two 
packages when you import them.

• Question: right or 
wrong?

import cisc3115.*;

class TestShapes {
public static void main(String[] args) {

Circle c1 = new Circle();
}

}



Apparent Hierarchies of 
Packages: Example

9/13/2018 CUNY | Brooklyn College 15

package cisc3115.shapes

class Circle {

double radius;

}

package cisc3115

class Student {

String name;

}

• cisc3115 and cisc3115.shapes are two 
packages when you import them.

import cisc3115.*;
import cisc3115.shapes.*;

class TestShapes {
public static void main(String[] args) {

Circle c1 = new Circle();
Student s1 = new Student();

}
}



Questions?

• Concept of package

• How to name a package?

• How to import a package?

• Why do we talk about this?

• To make types easier to find and use

• What if you created 1,000 classes? 

• To avoid naming conflicts

• You may want to have two “Student” classes

• To control access

9/13/2018 CUNY | Brooklyn College 16



Visibility Modifier

• No modifier: By default, the class, data 
field, or method can be accessed by any 
class in the same package.

• If you don’t explicitly declare which package your class 
belongs to, the class is in the default package, an unnamed 
package

• You may change this using three modifiers, public, private, 
and protected (“protected” to be discussed in the future) 
to the class, data field, or method

9/13/2018 CUNY | Brooklyn College 17



Public and Private Visibility 
Modifiers
• public

• The class, data field, or method is visible to any 
class in any package. 

• private

• The data field or methods can be accessed only 
by the declaring class.

9/13/2018 CUNY | Brooklyn College 18



Visibility Modifier: Example 1

• Public and private modifiers

9/13/2018 CUNY | Brooklyn College 19



Visibility Modifier: Example 2

• No modifiers

9/13/2018 CUNY | Brooklyn College 20



Visibility Modifier: Example 3

• Private

9/13/2018 CUNY | Brooklyn College 21



Visibility Modifiers: How to 
Choose? 
• Consider most/more restrictive visibility 

modifier first, unless you have a good reason 
not to

• Generally, make data fields private

• which make code easy to maintain (why?)

9/13/2018 CUNY | Brooklyn College 22



Data Field Encapsulation

• Making data fields private protects data and 
makes the class easy to maintain

• Why?

• Data may be tampered with

• e.g., Circle.numberOfObjects = 3

• The class becomes difficult to maintain and 
vulnerable to bugs

• e.g., statement like c1.radius = -5 can be written in many 
places

• Implementation also depends on the data structure

9/13/2018 CUNY | Brooklyn College 23



Data Field Encapsulation: 
Example

9/13/2018 CUNY | Brooklyn College 24

 Circle 

-radius: double 

-numberOfObjects: int 

 

+Circle() 

+Circle(radius: double) 

+getRadius(): double 

+setRadius(radius: double): void 

+getNumberOfObjects(): int 

+getArea(): double 

 

 

The radius of this circle (default: 1.0). 

The number of circle objects created. 

 

Constructs a default circle object. 

Constructs a circle object with the specified radius. 

Returns the radius of this circle. 

Sets a new radius for this circle. 

Returns the number of circle objects created. 

Returns the area of this circle. 

 

The - sign indicates 

private modifier 

 

 



Questions

• Visibility modifiers

• No visibility modifiers

• Public and private visibility modifiers

• Data field encapsulation

9/13/2018 CUNY | Brooklyn College 25



In-Class Exercise C06a-1

• In Exercise C03a-1, you have written a program that consist 
of two classes TV and TestTV. 

• Create a C06a-1 directory in the directory that hosts your weekly 
programming repository, copy the programs to the directory, and 
revise the program in the directory

• Add a private static data field to the TV class and the data field is to count 
the number of objects of the TV class that has been created.

• Add an instance data field to the TV class, called manufacturingDate that 
references a Date object represent the manufacturing date and time of aTV
object. 

• Following the principle of data encapsulation, make data fields private, and 
make methods public

• Test the revised program

• Use git to make a submission

9/13/2018 CUNY | Brooklyn College 26


