Nested While Loops and Example Problems

Hui Chen

Department of Computer & Information Science

Brooklyn College

Objectives

- To write nested loops (§5.9).
- To learn loops from a variety of examples (GCD, FutureTuition, Dec2Hex, Monte Carlo Simulation) (§5.10 - §5.11).

Outline

- Discussed
 - Loops and While loops
 - Design while loops
 - Design strategy, controlling loop (user confirmation, sentinel value)
 - Algorithm. Compute the sum
 - Operating system tricks. Using input/output redirection
 - while Loop vs. do-while Loop vs. for Loop
 - Pitfalls and Errors
- Nested Loops
- Algorithms and Example Programs
 - Finding the Greatest Common Divisor
 - Finding the root of an equation
 - Converting hexadecimal numbers to decimal numbers
 - Simple Monte Carlo simulations

Nested Loops

 Loops can be nested, i.e., in the loop body, we can have another loop, like,

```
while (outer_loop_continuation_condition) { // outer loop
    // statements
    while (inner_loop_continuation_condition) { // inner loop
        // statements
    }
    // statements
}
```

Problem. Print a multiplication table

• Write a program that uses nested for loops to print a multiplication table

	0	1	2	3	4	5	6	7	8	9
0	0	0								
1	0	1	2							
2			4	6	8					
3				9	12					
4										
5										
6										

Questions?

Examples using Nested While Loops

- (Discuss selected examples from below if time permits)
 - Problem 1. Finding the Greatest Common Divisor
 - Problem 2. Predicting Future Tuition
 - Problem 3. Converting Decimals to Hexadecimals
 - Problem 4. Estimating π using Monte Caro Simulation

Problem. Finding the Greatest Common Divisor

• Problem: Write a program that prompts the user to enter two positive integers and finds their greatest common divisor

Solution. Finding the Greatest Common Divisor

- Suppose you enter two integers 4 and 2, their greatest common divisor is 2. Suppose you enter two integers 16 and 24, their greatest common divisor is 8.
- So, how do you find the greatest common divisor?
- Let the two input integers be n1 and n2. You know number 1 is a common divisor, but it may not be the greatest commons divisor. So you can check whether k (for k = 2, 3, 4, and so on) is a common divisor for n1 and n2, until k is greater than n1 or n2

Problem. Predicting Future Tuition

- Problem: Suppose that the tuition for a university is \$10,000 this year and tuition increases 7% every year. In how many years will the tuition be doubled?
- This is in fact a root finding problem, i.e., find x such that y = f(x).
- For this problem, we need to find n, such that,
 20,000 = 10,000 * (1 + 0.07)ⁿ

Solution. Predicting Future Tuition

• Compute tuition repeatedly for year 1, 2, ..., until the tuition is greater than or equal to 20,000

Problem. Converting Decimals to Hexadecimals

 Hexadecimals are often used in computer systems programming (see Appendix for an introduction to number systems). Write a program to convert a hexadecimal number to the decimal number.

Solution. Converting Decimals to Hexadecimals

To convert a decimal number d to a hexadecimal number is to find the hexadecimal digits h_n, h_{n-1}, h_{n-2}, ..., h₂, h₁, and h₀ such that

$$d = h_n \times 16^n + h_{n-1} \times 16^{n-1} + h_{n-2} \times 16^{n-2} + \dots + h_2 \times 16^2 + h_1 \times 16^1 + h_0 \times 16^0$$

 These hexadecimal digits can be found by successively dividing *d* by 16 until the quotient is 0. The remainders are *h*₀, *h*₁, *h*₂, ..., *h*_{n-2}, *h*_{n-1}, and *h*_n.

Problem. Estimating π using Monte Caro Simulation

- The Monte Carlo simulation refers to a technique that uses random numbers and probability to solve problems.
- This method has a wide range of applications in computational mathematics, physics, chemistry, and finance.
- Let's consider to use the Monto Carlo simulation for estimating $\boldsymbol{\pi}$

Solution. Estimating π using Monte Caro Simulation

circleArea / squareArea = $\pi / 4$.

 π can be approximated as 4 * numberOfHits / numberOfTrials

Questions