Modularizing Code with
Methods

Hui Chen
Department of Computer & Information Science

Brooklyn College

Objectives

* To develop reusable code that is modular, easy to
read, easy to debug, and easy to maintain (§6.6).

* To apply the concept of method abstraction in
software development (§6.10).

Outline

* Discussed
e Defining and invoking value-returning methods
* Defining and invoking void methods
* Parameter passing and passing by value

e Pitfalls and errors
e To discuss

* Using method to modularize several example problems

* Converting hexadecimal to decimal

Modularizing Code

* Methods can be used to reduce redundant coding
and enable code reuse.

* Methods can also be used to modularize code and
improve the quality of the program

Method Abstraction

* You can think of the method body as a black box
that contains the detailed implementation for the
method

Optional arguments Optional return
for Input value

|

‘ Method Header ‘

Black Box

3/21/2024 CUNY | Brooklyn College

Benefits of Methods

e Methods can be used to reduce redundant coding
and enable code reuse.

e Write a method once and reuse it anywhere.
e Reduce redundancy and complexity.
e Information hiding.

e Hide the implementation from the user.

* Methods can also be used to modularize code and
improve the quality of the program

Problem. Generating Random
Characters

* Write a program to generate random characters,
such as, random lower case letters.

Review and Background: Characters
In Java

* Each character has a unique Unicode between 0 and FFFF in
hexadecimal (65535 in decimal, this is a simplification, since
Unicode has ...).

* To generate a random character is to generate a random integer
between 0 and 65535, e.g.,

(int)(Math.random() * (65535 + 1))

* The Unicode for lowercase letters are consecutive integers
starting from the Unicode for 'a’, then for 'b’, 'c', ..., and 'z'. The
Unicode for 'a' is

(int)'a’
e So, a random integer between (int)'a' and (int)'z' is

(int)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1)

Some Simplification

* All numeric operators can be applied to the char
operands.

* The char operand is cast into a number if the other
operand is a number or a character.

* So, the preceding expression can be simplified as
follows

'a' + Math.random() * ('z' - 'a' + 1)
e So arandom lowercase letter is

(char)('a' + Math.random() * ('z' - 'a' + 1))

Generate Random Characters

* To generalize the foregoing discussion, a random
character between any two characters chl and ch2
with chl < ch2 can be generated as follows

(char)(ch1l + Math.random() * (ch2 —ch1 + 1))

Solution. Generate Random
Characters

public class RandomCharacter {
/** Generate a random character between chl1 and ch2 */
public static char getRandomCharacter(char chl, char ch2) { // TODO }

/** Generate a random lowercase letter */
public static char getRandomLowerCaseletter() { // TODO }

/** Generate a random uppercase letter */
public static char getRandomUpperCaseletter() { // TODO }

/** Generate a random digit character */
public static char getRandomDigitCharacter() { // TODO }

/** Generate a random character */
public static char getRandomCharacter() { // TODO }

Questions

More Programming Problems

* Rewriting using methods

* Greatest Common Divisors

* Print Prime Numbers

* Is Palindrome?

* Converting Decimal to Hexadecimal
* New problem

e Convert Hexadecimal to Decimal

Questions

	Slide 1: Modularizing Code with Methods
	Slide 2: Objectives
	Slide 3: Outline
	Slide 4: Modularizing Code
	Slide 5: Method Abstraction
	Slide 6: Benefits of Methods
	Slide 7: Problem. Generating Random Characters
	Slide 8: Review and Background: Characters in Java
	Slide 9: Some Simplification
	Slide 10: Generate Random Characters
	Slide 11: Solution. Generate Random Characters
	Slide 12: Questions
	Slide 13: More Programming Problems
	Slide 14: Questions

