Example Programs and

Several Algorithms using

Loops

Hui Chen
Department of Computer \& Information Science Brooklyn College

Objectives

- To learn loops from a variety of examples (GCD, FutureTuition, Dec2Hex, Monte Carlo Simulation) (§5.10-§5.11).
- To write a program that displays prime numbers (§5.11).
- To write a program that checks whether a string is a palindrome (§5.13)

Outline

- Discussed
- while Loop vs. do-while Loop vs. for Loop;
- Nested loops
- break and continue
- Pitfalls and Errors
- Algorithms and Example Programs
- Converting hexadecimal numbers to decimal numbers
- Finding the Greatest Common Divisor
- Finding the root of an equation
- Simple Monte Carlo simulations
- Palindromes
- Prime numbers

Problem. Converting Decimals to Hexadecimals

- Hexadecimals are often used in computer systems programming (see Appendix for an introduction to number systems). Write a program to convert a hexadecimal number to the decimal number.

Solution. Converting Decimals to

Hexadecimals

- To convert a decimal number d to a hexadecimal number is to find the hexadecimal digits h_{n}, h_{n-1}, h_{n-} ${ }_{2}, \ldots, h_{2}, h_{1}$, and h_{0} such that

$$
d=h_{n} \times 16^{n}+h_{n-1} \times 16^{n-1}+h_{n-2} \times 16^{n-2}+\ldots+h_{2} \times 16^{2}+h_{1} \times 16^{1}+h_{0} \times 16^{0}
$$

- These hexadecimal digits can be found by successively dividing d by 16 until the quotient is 0 . The remainders are $h_{0}, h_{1}, h_{2}, \ldots, h_{n-2}, h_{n-1}$, and h_{n}.

Problem. Finding the Greatest Common Divisor

- Problem: Write a program that prompts the user to enter two positive integers and finds their greatest common divisor

Solution. Finding the Greatest Common Divisor

- Suppose you enter two integers 4 and 2, their greatest common divisor is 2 . Suppose you enter two integers 16 and 24 , their greatest common divisor is 8.
- So, how do you find the greatest common divisor?
- Let the two input integers be n 1 and n 2 . You know number 1 is a common divisor, but it may not be the greatest commons divisor. So you can check whether k (for $k=2,3,4$, and so on) is a common divisor for $n 1$ and $n 2$, until k is greater than $n 1$ or $n 2$

Problem. Predicting Future Tuition

- Problem: Suppose that the tuition for a university is $\$ 10,000$ this year and tuition increases 7% every year. In how many years will the tuition be doubled?
- This is in fact a root finding problem, i.e., find x such that $y=f(x)$.
- For this problem, we need to find n, such that, $20,000=10,000$ * $(1+0.07)^{n}$

Solution. Predicting Future Tuition

- Compute tuition repeatedly for year $1,2, \ldots$, until the tuition is greater than or equal to 20,000

Problem. Estimating π using Monte Caro Simulation

- The Monte Carlo simulation refers to a technique that uses random numbers and probability to solve problems.
- This method has a wide range of applications in computational mathematics, physics, chemistry, and finance.
- Let's consider to use the Monto Carlo simulation for estimating π

Solution. Estimating π using Monte Caro Simulation

circleArea $/$ squareArea $=\pi / 4$.
π can be approximated as $4 *$ numberOfHits / numberOfTrials

Questions

- Can you design solutions for these problems using
- While loops
- Do-while loops
- For any loops
- Combinations of the above loops

Guessing Number Problem Revisited

- "break" out of the loop when the guess is correct.

Problem. Checking Palindromes

- A string is a palindrome if it reads the same forward and backward. The words "mom," "dad," and "noon," for instance, are all palindromes.
- The problem is to write a program that prompts the user to enter a string and reports whether the string is a palindrome.

Solution. Checking Palindromes

- Check whether the first character in the string is the same as the last character. If so, check whether the second character is the same as the second-tolast character.
- This process continues until a mismatch is found or all the characters in the string are checked, except for the middle character if the string has an odd number of characters.

Problem. Displaying Prime Numbers

- Problem: Write a program that displays the first 50 prime numbers in five lines, each of which contains 10 numbers. An integer greater than 1 is prime if its only positive divisor is 1 or itself. For example, 2,3 , 5 , and 7 are prime numbers, but $4,6,8$, and 9 are not.

Solution. Displaying Prime Numbers

- Solution: The problem can be broken into the following tasks:

1. For number $=2,3,4,5,6, \ldots$, test whether the number is prime.
2. Determine whether a given number is prime.
3. Count the prime numbers.
4. Print each prime number, and print 10 numbers per line.

Questions

