Logical Operators

Hui Chen
Department of Computer \& Information Science Brooklyn College

Objectives

- To combine conditions using logical operators (\&\&, | | , and !) (§3.10).
- To program using selection statements with combined conditions (LeapYear, Lottery) (§§3.113.12).

Outline

- Discussed
- Boolean data type and Boolean expressions
- If-statements (one-way, two-way, multi-way, and nested ifstatements) and their flow charts
- Common errors and pitfalls
- Logical operators
- Seleveral ("big") programming problems (subtraction quiz, compute BMI, compute taxes, leap year, lottery)

Logical Operators

Operator

Description
logical negation
logical conjunction
logical disjunction
logical exclusion

Truth Table for Operator!

p \quad !p \quad Example (assume age $=24$, weight $=140$)
true false !(age >18) is false, because (age >18) is true.
false true
!(weight $==150$) is true, because (weight == 150) is false.

Truth Table for Operator \&\&

$p_{1} \quad$ p2 p1 \& \& p2 Example (assume age $=24$, weight = 140)
false false false (age <= 18) \&\& (weight < 140) is false, because both conditions are both false.
false true false
true false false
true true true (age $<=18$) $\& \&$ (weight $>=140$) is false, because (age $<=18)$ is false. (age >18) \& \& (weight > 140) is false, because (weight $>140)$ is false.
(age >18) \& \& (weight $>=140$) is true, because both (age > 18) and (weight >=140) are true.

Truth Table for Operator ||

$p_{1} \quad$ p2 p1 || p2 Example (assume age = 24, weight = 140)
false false false
false true true
true false true
true true true
(age <=18) \&\& (weight < 140) is false, because both conditions are both false. (age $<=18$) \&\& (weight $>=140$) is true, because (age $<=18$) is false, but (weight $>=140$) is true.
(age >18) \&\& (weight > 140) is true, because (age >18) is true, despite (weight >140) is false. (age >18) \&\& (weight $>=140$) is true, because both (age >18) and (weight >=140) are true.

Truth Table for Operator ^

$p_{1} \quad$ p2 p1 ^ p2 Example (assume age $=24$, weight $=140$)
false false false (age <=18) \&\& (weight < 140) is false, because both conditions are both false.
false true true
(age <=18) \&\& (weight $>=140$) is true, because (age $<=18$) is false, but (weight >=140) is true.
true false true (age >18) \& \& (weight > 140) is true, because (age > 18) is true, despite (weight > 140) is false.
true true false (age > 18) \& \& (weight >= 140) is false, because both (age >18) and (weight $>=140$) are true.

Let's use them in an example ...

- Here is a program that checks whether a number is divisible by $\underline{2}$ and $\underline{3}$, whether a number is divisible by $\underline{2}$ or $\underline{3}$, and whether a number is divisible by $\underline{2}$ or 3 but not both

Questions?

The \& and | Operators

- Do not confuse them with \&\& and ||
- Optional to understand \& and | fully for now

```
If x is 1, what is x after this expression?
    (x > 1) & (x++ < 10)
If x is 1, what is x after this expression?
(1 > x) && ( 1 > x++)
```

How about ($1==x) \mid(10>x++)$?

$$
(1==x) \quad|\mid(10>x++) ?
$$

Questions?

Programming Problem. Determining Leap Year?

- This program first prompts the user to enter a year as an int value and checks if it is a leap year.
- A year is a leap year if
- it is divisible by 4 but not by 100 , or
- it is divisible by 400.
- (year $\% 4==0 \& \&$ year $\% 100$!= 0) || (year $\% 400==0)$

Programming Problem. Lottery

- Write a program that randomly generates a lottery of a two-digit number, prompts the user to enter a two-digit number, and determines whether the user wins according to the following rule:
- If the user input matches the lottery in exact order, the award is $\$ 10,000$.
- If the user input matches the lottery, the award is $\$ 3,000$.
- If one digit in the user input matches a digit in the lottery, the award is $\$ 1,000$.

Questions?

