Design Simple Programs with Input and Output

Hui Chen
Department of Computer \& Information Science Brooklyn College

Objectives

- To design Java programs to perform simple computations (§2.2).
- To obtain input from the console using the Scanner class (§2.3).
- To use identifiers to name variables, constants, methods, and classes (§2.4).
- To use variables to store data (§§2.5-2.6).
- To program with assignment statements and assignment expressions (§2.6).

Outline

- Motivation
- From "problem", to "algorithm", and to "implementation"
- Design a program with input and output
- Hardcode input
- Read from users' input (from console)
- Dissecting the program
- Exercises/labs

Motivations

- Why do we program?
- Solve problems

Problem: Compute Area of a Shape

- Computing the area of a shape is a common problem we face in real life
- How big is the apartment?
- is it "cheaper" to buy an extra large pizza or to buy large pizza?
- Is the room big enough so that we can maintain a safe distance?

Problem to Solution: Compute Area of a Circle

- Solution: an algorithm
- Read in radius (hard code in the program)
- Compute area
- Display the area

Solution to Code: Compute Area of a Circle

- Let's implement the solution in Java public class ComputeArea \{
public static void main(String[] args) \{ double radius; double area;
// Assign a radius radius $=20$;
// Compute area
area $=$ radius * radius * 3.14159;
// Display results
System.out.println("The area for the circle of radius " + radius + " is " + area);
\}

Trace the program

- Compile
- Run
- Trace the program

Questions?

- Any questions?
- What if we want to compute the area of a different circle?

Reading Input from Console

- Reading Input from the Console
- Create a Scanner object
- Scanner input = new Scanner(System.in);
- Use the method nextDouble() to obtain to a double value. For example,
- System.out.print("Enter a double value: ");
- Scanner input = new Scanner(System.in);
- double d = input.nextDouble();

Locating the Scanner class

- Using the fully qualified class name
- Using import
- Implicit import
- import java.util.* ; // Implicit import
- Explicit import
- Import java.util.Scanner; // Explicit Import

Computing the Area of Circle Again!

Questions?

Dissecting the Example Programs

- Identifiers
- Variables
- Assignment statements

Identifiers

- An identifier is a sequence of characters that consist of letters, digits, underscores (_), and dollar signs (\$).
- An identifier must start with a letter, an underscore (_), or a dollar sign (\$). It cannot start with a digit.
- An identifier cannot be a reserved word.
- See Appendix A of the textbook, "Java Keywords," for a list of reserved words.
- An identifier cannot be true, false, or null (they are not keywords, but you cannot use them to name identifiers).
- An identifier can be of any length.

Variables

- Represent values that may be changed in the program

Examples of Variables

// Compute the first area
radius $=1.0$;
area $=$ radius * radius * 3.14159;
System.out.println("The area is " + area + " for radius "+radius);
// Compute the second area
radius $=2.0$;
area $=$ radius * radius * 3.14159;
System.out.println("The area is " + area + " for radius "+radius);

Declaring Variables

int x; // Declare x to be an
// integer variable;
double radius; // Declare radius to
// be a double variable;
char a; // Declare a to be a
// character variable;

Assignment

$x=1 ; \quad / /$ Assign 1 to $x ;$
radius $=1.0 ; / /$ Assign 1.0 to radius;
$a=$ ' A '; // Assign ' A ' to $a ;$

Declaring and Initializing in One Step

int $\mathrm{x}=1$;
double d = 1.4;

Questions?

Lab Exercise

- Compute GPA given GPA value (instead of letter grades) of two courses and credit hours obtained from user's input
- See (PDF) pages 59 of the Undergraduate Bulletin
- GPA $=\frac{(\text { GPA Value } 1) \times(\text { Credits } 1)+(\text { GPA Value } 2) \times(\text { Credits } 2)}{(\text { Credits } 1)+(\text { Creits } 2)}$

