Nested While Loops

Hui Chen
Department of Computer \& Information Science Brooklyn College

Objectives

- To write nested loops (§5.9).
- To learn loops from a variety of examples (GCD, FutureTuition, Dec2Hex, Monte Carlo Simulation) (§5.10-§5.11).

Outline

- Discussed
- Loops and While loops
- Design while loops
- Design strategy, controlling loop (user confirmation, sentinel value)
- Algorithm. Compute the sum
- Operating system tricks. Using input/output redirection
- while Loop vs. do-while Loop vs. for Loop
- Pitfalls and Errors
- Nested Loops
- Algorithms and Example Programs
- Finding the Greatest Common Divisor
- Finding the root of an equation
- Converting hexadecimal numbers to decimal numbers
- Simple Monte Carlo simulations

Nested Loops

- Loops can be nested, i.e., in the loop body, we can have another loop, like,

```
while (outer_loop_continuation_condition) { // outer loop
    // statements
    while (inner_loop_continuation_condition) { // inner loop
        // statements
    }
    // statements
}
```


Problem. Print a multiplication table

- Write a program that uses nested for loops to print a multiplication table

	0	1	2	3	4	5	6	7	8	9
0	0	0	...							
1	0	1	2	...						
2	4	6	8	...				
3				9	12	...				
4										
5										
6										
...										

Questions?

Examples using Nested While Loops

- (Discuss selected examples from below if time permits)
- Problem 1. Finding the Greatest Common Divisor
- Problem 2. Predicting Future Tuition
- Problem 3. Converting Decimals to Hexadecimals
- Problem 4. Estimating π using Monte Caro Simulation

Problem. Finding the Greatest Common Divisor

- Problem: Write a program that prompts the user to enter two positive integers and finds their greatest common divisor

Solution. Finding the Greatest Common Divisor

- Suppose you enter two integers 4 and 2, their greatest common divisor is 2 . Suppose you enter two integers 16 and 24 , their greatest common divisor is 8.
- So, how do you find the greatest common divisor?
- Let the two input integers be n1 and n2. You know number 1 is a common divisor, but it may not be the greatest commons divisor. So you can check whether k (for $k=2,3,4$, and so on) is a common divisor for $n 1$ and $n 2$, until k is greater than $n 1$ or $n 2$

Problem. Predicting Future Tuition

- Problem: Suppose that the tuition for a university is $\$ 10,000$ this year and tuition increases 7% every year. In how many years will the tuition be doubled?
- This is in fact a root finding problem, i.e., find x such that $y=f(x)$.
- For this problem, we need to find n, such that, $20,000=10,000$ * $(1+0.07)^{\mathrm{n}}$

Solution. Predicting Future Tuition

- Compute tuition repeatedly for year $1,2, \ldots$, until the tuition is greater than or equal to 20,000

Problem. Converting Decimals to Hexadecimals

- Hexadecimals are often used in computer systems programming (see Appendix for an introduction to number systems). Write a program to convert a hexadecimal number to the decimal number.

Solution. Converting Decimals to

Hexadecimals

- To convert a decimal number d to a hexadecimal number is to find the hexadecimal digits h_{n}, h_{n-1}, h_{n-} ${ }_{2}, \ldots, h_{2}, h_{1}$, and h_{0} such that

$$
d=h_{n} \times 16^{n}+h_{n-1} \times 16^{n-1}+h_{n-2} \times 16^{n-2}+\ldots+h_{2} \times 16^{2}+h_{1} \times 16^{1}+h_{0} \times 16^{0}
$$

- These hexadecimal digits can be found by successively dividing d by 16 until the quotient is 0 .
The remainders are $h_{0}, h_{1}, h_{2}, \ldots, h_{n-2}, h_{n-1}$, and h_{n}.

Problem. Estimating π using Monte Caro Simulation

- The Monte Carlo simulation refers to a technique that uses random numbers and probability to solve problems.
- This method has a wide range of applications in computational mathematics, physics, chemistry, and finance.
- Let's consider to use the Monto Carlo simulation for estimating π

Solution. Estimating π using Monte Caro Simulation

circleArea $/$ squareArea $=\pi / 4$.
π can be approximated as $4 *$ numberOfHits / numberOfTrials

Questions

