Augmented Assignment and Data Type Casting

Hui Chen

Department of Computer & Information Science

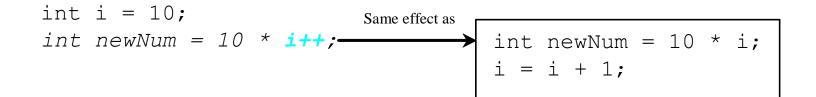
Brooklyn College

Objectives

- To program with assignment statements and assignment expressions (§2.6).
- To use augmented assignment operators (§2.13).
- To distinguish between postincrement and preincrement and between postdecrement and predecrement (§2.14).
- To cast the value of one type to another type (§2.15).

Outline

- Discussed
 - Problem \rightarrow Algorithm \rightarrow Implementation
 - Design a program with input and output
 - Naming convention (best practice)
 - Numeric data types
 - Numeric operators (operating on numeric data types)
- This lesson covers
 - Augmented assignment statements
 - Increment and decrement operators
 - Type casting


Augmented Assignment Operators

Operator	Name	Example	Equivalent
+=	Addition assignment	i += 8	i = i + 8
-=	Subtraction assignment	i -= 8	i = i - 8
*=	Multiplication assignment	i *= 8	i = i * 8
/=	Division assignment	i /= 8	i = i / 8
%=	Remainder assignment	i %= 8	i = i % 8

Increment and Decrement Operators

Operator	Name	Description	Example (assume $i = 1$)
++var	preincrement	Increment var by 1 , and use the new var value in the statement	<pre>int j = ++i; // j is 2, i is 2</pre>
var++	postincrement	Increment var by 1 , but use the original var value in the statement	<pre>int j = i++; // j is 1, i is 2</pre>
var	predecrement	Decrement var by 1 , and use the new var value in the statement	int j = −−i; // j is 0, i is 0
var	postdecrement	Decrement var by 1 , and use the original var value in the statement	<pre>int j = i; // j is 1, i is 0</pre>

Post- vs. Pre- Increment/Decrement

Best Practice

- Using increment and decrement operators makes expressions short
- But it also makes them complex and difficult to read.
- Avoid using these operators in expressions that modify multiple variables, or the same variable for multiple times
- Example. Don't write this
 - int k = ++i + i.

Augmented Assignment Expressions and Assignment Statements

Only the following types of expressions can be statements

variable op= expression; // Where op is +, -, *, /, or %
++variable;

variable++;

--variable;

variable--;

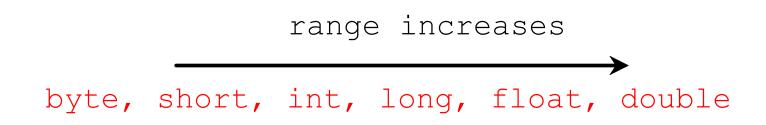
Questions?

Numeric Type Conversion

• Consider the following statements

Conversion Rules

- When performing a binary operation involving two operands of different types, Java automatically converts the operand based on the following rules:
 - 1. If one of the operands is double, the other is converted into double.
 - 2. Otherwise, if one of the operands is float, the other is converted into float.
 - 3. Otherwise, if one of the operands is long, the other is converted into long.
 - 4. Otherwise, both operands are converted into int.


Type Casting

Implicit casting double d = 3; (type widening)

Explicit casting int i = (int)3.0; (type narrowing) int i = (int)3.9; (Fraction part is truncated)

What is wrong? int x = 5 / 2.0;

Range of Values

Questions?

Let's use these to solve a problem

• Convert a Fahrenheit degree to Celsius and keep two digits after the decimal point.

Problem. Keeping two digits after decimal point

- We want to display GPA in a nice format, i.e., only display two digits after the decimal point.
- We are computing sales tax, but the smallest denomination is a cent. So, ...

Computing and Displaying Sales Tax

import java.util.Scanner;

```
public class SalesTax {
  public static void main(String[] args) {
    Scanner input = new Scanner(System.in);
```

```
System.out.print("Enter purchase amount in cents: ");
long purchaseAmount = input.nextLong();
```

How about this (solution in the textbook)?

import java.util.Scanner;

public class SalesTax {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);

System.out.print("Enter purchase amount: "); double purchaseAmount = input.nextDouble();

```
double tax = purchaseAmount * 0.06;
System.out.println("Sales tax is " + (int)(tax * 100) / 100.0);
```


Questions?

- Is there a bug in
 - System.out.println("Sales tax is " + (int)(tax * 100) / 100.0);
- Can you improve it using Math.round()?

Casting in an Augmented Expression

- In Java, an augmented expression of the form x1
 op= x2 is implemented as x1 = (T)(x1 op x2), where
 T is the type for x1.
- Therefore, the following code is correct.

int sum = **0**;

sum += 4.5; // sum becomes 4 after this statement

sum += 4.5 is equivalent to sum = (int)(sum + 4.5).

Questions?

Lab Exercise

 Write a program that convert a Fahrenheit degree to Celsius and keep two digits after the decimal point.