
CISC 3115 TY2

Recursion and Recursive Math

Functions
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

11/10/2020 1CUNY | Brooklyn College

Outline

• Problem Solving using Recursion

• Recursive math functions

• Design solutions to recursive math functions using

recursion

• Define mathematical recursive function with base case

• Design Java methods

11/10/2020 CUNY | Brooklyn College 2

Problem Solving using Recursion

• A divide-and-conquer problem solving approach

where a problem can be divided into the same

problems of smaller size

• Examples

• Mathematical recursive functions

• Sorting, searching

• …

11/10/2020 CUNY | Brooklyn College 3

Mathematical Recursive Functions

• Such functions take their name from the process of

recursion by which the value of a function is

defined by the application of the same function

applied to smaller arguments.

• Examples

• Function to compute factorials

• Function to compute Fibonacci numbers

11/10/2020 CUNY | Brooklyn College 4

Factorial

• Factorial of n is defined as

• f(n) = n! = n (n-1) (n-2) … 1

• whose recursive function can be

• f(n) = n f(n-1)

• with the base case

• f(0) = 1

11/10/2020 CUNY | Brooklyn College 5

The same problem of
smaller size

The same function
applied to smaller
arguments

Computer Factorial

• Recursive function to compute factorial

𝑓 𝑛 = ቊ
𝑛𝑓(𝑛 − 1) 𝑖𝑓 𝑛 > 0

1 𝑖𝑓 𝑛 = 0

• Example

• f(4) = 4 f(3) = 4 3 f(2) = 4 3 2 f(1) = 4 3 2 1 f(0) = 4 3 2 1 1

= 24

11/10/2020 CUNY | Brooklyn College 6

Base Case

• Base case is important

• Otherwise, where do we stop (without the base

case)? e.g., consider

• f(3) = 3 f(2) = 3 2 f(1) = 3 2 1 f(0) = 3 21 0 f(-1) = 3 2 1 0 -

1 f(-2) …

• The base case makes sure that we stop the

recursive process somewhere.

11/10/2020 CUNY | Brooklyn College 7

Design Factorial Recursive Method

• Design: int factorial(int n)

• Observe:

• Recursive function: f(n) = n * f(n-1) when n > 0

• Bae case: f(0) = 1

• Design method factorial(n: int):

• f(n) = n * f(n-1): when computing f(n), we invoke factorial(n)
where we compute it by n * factorial(n-1), i.e., we invoke the
same factorial method recursively.

• f(0) = 1: we stop invoking the factorial method when n is 0.

11/10/2020 CUNY | Brooklyn College 8

Fibonacci Number

• Mathematical recursive function to compute

Fibonacci numbers

𝑓 𝑛 = ൞

𝑓 𝑛 − 1 + 𝑓(𝑛 − 2) 𝑖𝑓 𝑛 > 1
1 𝑖𝑓 𝑛 = 1
0 𝑖𝑓 𝑛 = 0

• What is the base case?

11/10/2020 CUNY | Brooklyn College 9

Design Fibonacci Recursive Method

• Design: int fibonacci(int n)

• fibonacci(n) is computed as

• fibonacci(n-1)+fibonacci(n-2) when n>1 based on recursive
function

• f(n) = f(n-1) + f(n-2) when n>1

• fibonacci(0) should return 0 and fibonacci(1) should
return 1 according to the base case

• f(0) = 0

• f(1) = 1

11/10/2020 CUNY | Brooklyn College 10

Recursive Calls and Call Stack

• factorial(4) = 4 * factorial(3)

= 4 * (3 * factorial(2))

= 4 * (3 * (2 * factorial(1)))

= 4 * (3 * (2 * (1 * factorial(0))))

= 4 * (3 * (2 * (1 * 1))))

= 4 * (3 * (2 * 1))

= 4 * (3 * 2)

= 4 * (6)

= 24

• Observe the animation from the publisher and the author of the
textbook (included below)

11/10/2020 CUNY | Brooklyn College 11

12

Computing Factorial

factorial(4)

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

13

Computing Factorial

factorial(4) = 4 * factorial(3)

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

14

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

15

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

16

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))

= 4 * 3 * (2 * (1 * factorial(0)))

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

17

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))

= 4 * 3 * (2 * (1 * factorial(0)))

= 4 * 3 * (2 * (1 * 1)))

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

18

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))

= 4 * 3 * (2 * (1 * factorial(0)))

= 4 * 3 * (2 * (1 * 1)))

= 4 * 3 * (2 * 1)

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

19

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))

= 4 * 3 * (2 * (1 * factorial(0)))

= 4 * 3 * (2 * (1 * 1)))

= 4 * 3 * (2 * 1)

= 4 * 3 * 2

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

20

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * (3 * factorial(2))

= 4 * (3 * (2 * factorial(1)))

= 4 * (3 * (2 * (1 * factorial(0))))

= 4 * (3 * (2 * (1 * 1))))

= 4 * (3 * (2 * 1))

= 4 * (3 * 2)

= 4 * (6)

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

21

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * (3 * factorial(2))

= 4 * (3 * (2 * factorial(1)))

= 4 * (3 * (2 * (1 * factorial(0))))

= 4 * (3 * (2 * (1 * 1))))

= 4 * (3 * (2 * 1))

= 4 * (3 * 2)

= 4 * (6)

= 24

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

22

Trace Recursive factorial
animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(4)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5
Stack

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

23

Trace Recursive factorial
animation

Executes factorial(3)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Stack

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

24

Trace Recursive factorial
animation

Executes factorial(2)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Stack

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

25

Trace Recursive factorial
animation

Executes factorial(1)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Stack

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

26

Trace Recursive factorial
animation

Executes factorial(0)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)

Stack

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

27

Trace Recursive factorial
animation

returns 1

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)

Stack

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

28

Trace Recursive factorial
animation

returns factorial(0)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)

Stack

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

29

Trace Recursive factorial
animation

returns factorial(1)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Stack

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

30

Trace Recursive factorial
animation

returns factorial(2)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Stack

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

31

Trace Recursive factorial
animation

returns factorial(3)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Stack

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

32

Trace Recursive factorial
animation

returns factorial(4)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5
Stack

33

factorial(4) Stack Trace

Space Required

for factorial(4)
1 Space Required

for factorial(4)

2 Space Required

for factorial(3)

Space Required

for factorial(4)

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)

Space Required

for factorial(4)

6

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

7

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

8 Space Required

for factorial(3)

Space Required

for factorial(4)
9

Stack Overflow Error

• Neglecting or mishandling the base case will lead to a
Stack Overflow error, for which, Java throws a
StackOverflowError

$ java Factorial

Exception in thread "main" java.lang.StackOverflowError

at Factorial.factorial(Factorial.java:3)

at Factorial.factorial(Factorial.java:3)

at Factorial.factorial(Factorial.java:3)

at Factorial.factorial(Factorial.java:3)

...

11/10/2020 CUNY | Brooklyn College 34

Characteristics of Recursion

• All recursive methods have the following

characteristics:

• One or more base cases (the simplest case) are used to

stop recursion.

• Every recursive call reduces the original problem,

bringing it increasingly closer to a base case until it

becomes that case.

11/10/2020 CUNY | Brooklyn College 35

Recursion as Problem Solving

Strategy

• Break the problem into subproblems such that one

or more subproblems resembles the original

problem

• These subproblems resembling the original problem is

almost the same as the original problem in nature with a

smaller size.

• Apply the same approach to solve the subproblem

recursively to reach the base case

11/10/2020 CUNY | Brooklyn College 36

Questions?

• Concept of recursion

• Problem solving using recursion

• Mathematical recursive functions

• Base case

• Call stack and stack trace

• StackOverflowError

11/10/2020 CUNY | Brooklyn College 37

