
CISC 3115 TY2

Recursion and Helper Method
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

11/10/2020 1CUNY | Brooklyn College

Outline

• Review

• Characteristics of recursion

• Recursion as problem solving strategy

• Recursive helper method/function

11/10/2020 CUNY | Brooklyn College 2

Characteristics of Recursion

• All recursive methods have the following

characteristics:

• One or more base cases (the simplest case) are used to

stop recursion.

• Every recursive call reduces the original problem,

bringing it increasingly closer to a base case until it

becomes that case.

11/10/2020 CUNY | Brooklyn College 3

Recursion as Problem Solving

Strategy

• Break the problem into subproblems such that one

or more subproblems resembles the original

problem

• These subproblems resembling the original problem is

almost the same as the original problem in nature with a

smaller size.

• Apply the same approach to solve the subproblem

recursively to reach the base case

11/10/2020 CUNY | Brooklyn College 4

Is It a Palindrome?

• Problem: is a given string a palindrome?

• Recursive solution:

• 1) Compare the first and last character of the string. If
not equal, not palindrome; 2) otherwise, repeat for the
substring less the first and the last character (the same
problem whose size is the original size – 2)

• Base case: a single character or empty string, and the
single character string or the empty string is always a
palindrome.

11/10/2020 CUNY | Brooklyn College 5

Is It a Palindrome? Solution

• An example realization of the solution

public static boolean isPalindrome(String s) {

// base case

if (s.length() <= 1) return true;

// subproblem 1

if (s.charAt(0) != s.charAt(s.length()-1)) return false;

// subproblem 2

return isPalindrome(s.substring(1, s.length()-1));

}

11/10/2020 CUNY | Brooklyn College 6

Is It a Palindrome? Discussion

• Is the solution efficient, in particular, when the string is very long? Hint: a Java
string is immutable? How many string objects are being created?

public static boolean isPalindrome(String s) {

// base case

if (s.length() <= 1) return true;

// subproblem 1

if (s.charAt(0) != s.charAt(s.length()-1)) return false;

// subproblem 2

return isPalindrome(s.substring(1, s.length()-1));

}

11/10/2020 CUNY | Brooklyn College 7

Introducing Recursive Helper

• Rewrite it by introducing a new method that uses parameters to indicate
subproblem size

public static boolean isPalindrome(String s) {

return isPalindrome(s, 0, s.length()-1);

}

// The recursive helper method

public static boolean isPalindrome(String s, int beginIndex, int endIndex) {

if (endIndex - beginIndex <= 1) return true; // base case

if (s.charAt(beginIndex) != s.charAt(endIndex)) return false; // subproblem 1

return isPalindrome(s, beginIndex+1, endIndex-1); // subproblem 2

}

11/10/2020 CUNY | Brooklyn College 8

Questions?

• Recursive helper

• Multiple subproblems

11/10/2020 CUNY | Brooklyn College 9

Selection Sort

• Problem: sort a list

• Recursive solution: divide the problem into two

subproblems

• 1. Find the smallest number in the list and swaps it with

the first number.

• 2. Ignore the first number and sort the remaining

smaller list recursively (subproblem is the same problem

as the original problem with the size – 1).

11/10/2020 CUNY | Brooklyn College 10

Selection Sort: Solution

• The sample solution includes two realizations

• Sort integers

• Sort any objects with the Comparator interface

11/10/2020 CUNY | Brooklyn College 11

Searching (Binary Search)

• Problem: search an item (using its key) in a sorted list

• Recursive solution: divide the problem into subproblems, one or more
are essentially the original problem

• 1. Find the middle element in the list

• 2. The list becomes three parts. Determine which part contains or may contain
the item. Search the item the part that may contain the item (the subproblem
identical to the original problem but with smaller size)

• Case 1: If the key is less than the middle element, recursively search the key in the first half
of the list.

• Case 2: If the key is equal to the middle element, the search ends with a match.

• Case 3: If the key is greater than the middle element, recursively search the key in the
second half of the array.

• Base case: the list becomes empty (not found); or it is the middle element
(found).

11/10/2020 CUNY | Brooklyn College 12

Problem Solving Example: Searching:

Implementation
• An example implementation using a helper method

public static int search(int[] numbers, int key) { return search(numbers, key, 0, numbers.length-1); }

private static int search(int[] numbers, int key, int beginIndex, int endIndex) {

int mid = (endIndex + beginIndex) / 2; // observe when mistakenly wrote - instead

if (beginIndex > endIndex) return - beginIndex - 1; // base case (not foudn)

if (numbers[mid] == key) return mid; // base case (found)

if (key < numbers[mid]) { // subproblem, the same problem but smaller size

return search(numbers, key, beginIndex, mid-1);

} else { // subproblem, the same problem but smaller size

return search(numbers, key, mid+1, endIndex);

}

}

11/10/2020 CUNY | Brooklyn College 13

Iteration or Recursion?

• Some problems appear to be easily solved using iteration,
while others recursion.

• Question: can you solve preceding examples using iteration?

• Example problems (recursion is easier)

• Search files containing a word in a directory (the search file
problem, already discussed)

• Find directory size (the total size in bytes of all files under a
directory, a revision of the search file problem)

• Solve the “Tower of Hanoi” problem

• Quick sort

11/10/2020 CUNY | Brooklyn College 14

Directory Size

• Problem: to find the size of a directory, i.e., the sum

of the sizes of all files in the directory.

• The challenge: a directory may contain

subdirectories and files.

11/10/2020 CUNY | Brooklyn College 15

directory

...

1f

1

2f

1

mf

1

1d

1

2d

1

nd

1

...

Directory Size: Thinking Recursively

• The size of the directory can be defined recursively

as follows,

11/10/2020 CUNY | Brooklyn College 16

)(...)()()(...)()()(2121 nm dsizedsizedsizefsizefsizefsizedsize +++++++=

Problem Solving Example: Tower of

Hanoi
• Problem:

• There are n disks labeled 1, 2, 3, . . ., n, and three towers
labeled A, B, and C.

• All the disks are initially placed on tower A.

• No disk can be on top of a smaller disk at any time.

• Only one disk can be moved at a time, and it must be the top
disk on the tower.

• See
https://liveexample.pearsoncmg.com/dsanimation/Tow
erOfHanoi.html

11/10/2020 CUNY | Brooklyn College 17

https://liveexample.pearsoncmg.com/dsanimation/TowerOfHanoi.html

Examine it at Size = 3

11/10/2020 CUNY | Brooklyn College 18

How about Large Size?

• Starting with n disks on tower A. The Tower of

Hanoi problem can be decomposed into three

subproblems:

• Move n-1 disks from tower A to tower C

• Move disk n from tower A to tower B

• Move n-1 disks from tower C to tower B

11/10/2020 CUNY | Brooklyn College 19

How about Large Size?

11/10/2020 CUNY | Brooklyn College 20

Questions?

• Problem solving using recursion

• Divide big problem into smaller subproblems some of

which are the same problem as the original one with

smaller size

• Examples

• Sorting, searching, and others

• More examples in the textbook

11/10/2020 CUNY | Brooklyn College 21

