
CISC 3115 TY2

Methods and Objects
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

9/10/2020 1CUNY | Brooklyn College

Notice

• The slides are always subject to change.

• The slides posted before the lecture are for preview

only, and they are a draft and their content can

change significantly.

9/10/2020 CUNY | Brooklyn College 2

Outline

• Passing objects to methods

• Array of objects

• Scope of variables

9/10/2020 CUNY | Brooklyn College 3

Passing Objects to Methods

• Java passes arguments to methods by their values

• Primitive type argument

• Passing by value for primitive type argument

• (Object) reference type

• Passing by value for reference type argument

• The value is the reference to the object

9/10/2020 CUNY | Brooklyn College 4

Passing Objects to Methods: Ex 1

public class TestCircle {

pubic static void main(String[] args) {

double small = 5.0, big = 25.0;

Circle c1 = new Circle (small);

printCircle(c1);

c1. setRadius(big);

printCircle(c1);

}

}

public static void printCircle(Circle c) {

System.out.println(“The area of the circle of radius “ + c.getRadius() + “ is “ + c.getArea());

}

9/10/2020 CUNY | Brooklyn College 5

Passing Objects to Methods: Ex 2

public class TestCircle {

pubic static void main(String[] args) {

Circle myCircle = new Circle (1.0);

int n = 5;

printCircle(myCircle, n);

printCircle(myCircle);

}

}

public static void printCircle(Circle c) {

System.out.println(“The area of the circle of
radius “ + c.getRadius() + “ is “ + c.getArea());

}

public static void printCircle(Circle c, int times) {

System.out.println(“Radius \t\t Area”);

for (int i = 0; i < times; i ++) {

System.out.println(c.getRadius() + “\t\t” +
c.getArea());

c.getRadius(c.getRadius() + 1);

}

}

9/10/2020 CUNY | Brooklyn College 6

Pass-by-Value

• Primitive type and reference type

9/10/2020 CUNY | Brooklyn College 7

Passing Objects to Methods: Ex 3:

Side Effect?
public class TestCircle {

pubic static void main(String[] args) {

Circle myCircle = new Circle (1.0);

int n = 5;

printCircle(myCircle, n);

printCircle(myCircle);

}

}

public static void printCircle(Circle c) {

System.out.println(“The area of the circle of
radius “ + c.getRadius() + “ is “ + c.getArea());

}

public static void printCircle(Circle circle, int
times) {

System.out.println(“Radius \t\t Area”);

Circle c = new Circle(circle);

for (int i = 0; i < times; i ++) {

System.out.println(c.getRadius() + “\t\t” +
c.getArea());

c.setRadius(c.getRadius() + 1);

}

}

9/10/2020 CUNY | Brooklyn College 8

Questions?

• Pass parameters to methods

• Primitive type values

• Reference type values

• Is there any side effects? Is the side effect desired or

undesired?

9/10/2020 CUNY | Brooklyn College 9

Exercise (to be continued, 1 of 3)

• In this exercise, you are to revise previous Java classes
you wrote.

• Make a directory for this exercise (e.g., ex02 or CircleUtils),
work on the directory for this exercise

• In the end, your program consists of Circle.java,
CircleUtils.java, and TestCircle.java (or CircleClient.java).

• You will create CircleUtils.java, and revise TestCircle.java (or
CircleClient.java)

• See next two slides for how you should write or revise these two
classes

9/10/2020 CUNY | Brooklyn College 10

Exercise (continued, 2 of 3)
• The CircleUtils class (in file CircleUtils.java) that consists of 6

methods

• Move the two printCircle(…) methods from TestCircle.java to
CircleUtils.java, and make them instance methods. These two
methods are discussed in this lecture

• Add four new methods to the CircleUtils class with the following
signatures

• public void doubleRadius(Circle c): double c’s readius

• public void doubleArea(Circle c): double c’s area by setting c’s radius to an
appropriate value

• public Circle getNewCircleDoubleRadius(Circle c): returns a Circle object
whose radius is twice of c’s, but without changing c

• public Circle getNewCircleDoubleArea(Circle c): returns a Circle object
whose area is twice of c’s, but without changing c

9/10/2020 CUNY | Brooklyn College 11

Exercise (continued, 3 of 3)

• Revise TestCircle.java

• Remove the two printCircle(…) methods (you have done

this in previous slide if you “moved” instead of “copying”

them)

• Revise the main methods in TestCircle.java (or

CircleClient.java) to demonstrate the 6 methods in the

CircleUtils class

• Submit the work as a journal entry

9/10/2020 CUNY | Brooklyn College 12

Array and Array of Objects

• What is an array? How do we create an array in Java?

• Create an array of objects

• Circle[] circleArray = new Circle[10];

• An array of objects is actually an array of reference
variables.

• So invoking circleArray[1].getArea() involves two levels of
referencing.

• circleArray references to the entire array.

• circleArray[1] references to a Circle object.

9/10/2020 CUNY | Brooklyn College 13

Two-level Referencing

• An array is in effect an object

• Circle[] circleArray = new Circle[10];

9/10/2020 CUNY | Brooklyn College 14

Array of Objects: Example

• Compute areas of an array of Circles

• Create an array of Circle objects

• Print the array in a method to which the array is passed

as an argument.

• See it in the sample program.

• Formatted output (see here and here)

• Array length

9/10/2020 CUNY | Brooklyn College 15

https://github.com/CISC3115TY3FA18/SamplePrograms/tree/master/C06bObjectArray/TotalArea
https://docs.oracle.com/javase/tutorial/java/data/numberformat.html
https://docs.oracle.com/javase/tutorial/essential/io/formatting.html

Questions?

• What is an array?

• How do we create an array?

• How do we create an array of objects?

• How do we pass an array of objects to a method

• How do we get the length of an array?

• How do we reference to each object referenced by

an array of objects?

9/10/2020 CUNY | Brooklyn College 16

Scope of Variables

• Scope: the part of the program where the variable can be
referenced.

• Instance and static variables

• The scope is the entire class. They can be declared anywhere inside
a class.

• There is one exception: when a data field is initialized based on a reference
to another data field

• Local variable

• The scope starts from its declaration and continues to the end of
the block that contains the variable.

• A local variable must be initialized explicitly before it can be used.

9/10/2020 CUNY | Brooklyn College 17

Scope of Variable: Example 1

public class Circle {

public double getArea() {

return radius * radius * Math.PI;

}

double radius = 1.0;

}

public class F {

private int i;

private int j = i + 1;

}

9/10/2020 CUNY | Brooklyn College 18

Scope of Variable: Example 2

pubic class F {

private int x = 0;

private int y = 0;

public void p() {

int x = 1;

System.out.println(“x = “ + x);

System.out.println(“y = “ + y);

}

}

9/10/2020 CUNY | Brooklyn College 19

Two variables

Scope of Variable: Example 3

• What is the output?

public class TestScope {

public static void main(String[] args) {

int i = 2; int k = 3;

{

int j = 3;

System.out.println(“i + j is “ + i + j);

}

k = i + j;

System.out.println(“k is “ + k);

System.out.printlln(“j is “ + j);

}

private static int i = 0;

private static int j = 0;

}

9/10/2020 CUNY | Brooklyn College 20

Questions?

• Concept of scope of variables

• Scope of local, instance, and static variables

9/10/2020 CUNY | Brooklyn College 21

