CISC 3115 TY3
Constructing Objects

Hui Chen
Department of Computer & Information Science

CUNY Brooklyn College

Notice

* The slides are always subject to change.

* The slides posted before the lecture are for preview
only, and they are a draft and their content can
change significantly.

Outline

In last class, we discussed

Defining object

Defining class

UML class diagram

Constructors

More about constructor
* The default constructor
* Overriding the default constructor

* Overloading constructors

Garbage collection

A few classes in the Java Library (Java API)

A Circle Class

9/8/2020

class Circle {
/** The radius of this circle */

double radius = 1.0; <

/** Construct a circle object */ —]
Circle () {

}

/** Construct a circle object */
Circle (double newRadius) {
radius = newRadius;

}

/** Return the area of this circle */

Data field

— Constructors

double getArea () { <
return radius * radius * 3.14159;

}

Method

CUNY | Brooklyn College

Constructors

* A special kind of methods that are invoked when
objects are constructed, typically, to initialize the
data fields of the objects

Circle () {
}

Circle (double newRadius) {
radius = newRadius;

}

9/8/2020 CUNY | Brooklyn College

Defining Constructors

e Name: constructors must have the same name as the class itself.

* Method parameter: A constructor may or may not have a
parameter

* A constructor with no parameters is referred to as a no-arg constructor.

e Return type: constructors do not have a return type, not even
void.

* Invoke constructors: constructors are invoked using the new
operator when an object is created.

e Purpose of constructors: constructors play the role of initializing
objects.

Creating Objects using Constructors

* Use the new operator

* Examples

* new Circle()

* new Circle(25.0)

Default Constructor

* One may write a class without defining a
constructor.

* In this case, Java compiler will provide a no-arg (no
argument) constructor with an empty body, called a
default constructor

* However, if one provides a constructor with
parameters, Java compiler will not create the
default constructor

e But what if you still want to do, e.g., new Circle()?

Questions

e Constructors

* Writing constructors

e Use constructors

e Default constructors

Object Referencing Variables

* One may access objects via object reference
variables (or reference variables)

* 4 steps

Declare reference variable

Create an object

Assign reference to an object to the reference variable

S N

Use the reference variable to access the object

Declaring Object Reference Variables

* To declare a reference variable, use the syntax:

e ClassName objectRefVar;

* Example

e Circle c1;

Assigning Reference Variables

* Example
Circle c1;

cl = new Circle();

Declaring/Creating Objects
in a Single Step

* Syntax

* ClassName objectRefVar = new ClassName();

* Example

e Circle c1 = new Circle();

Accessing Objects

* Accessing objects
* Accessing data fields

* Accessing methods

e Data fields
e Syntax: objectRefVar.data

* Example: cl.radius

e Methods

» Syntax: objectRefVar.method()
 Example: cl.getArea()

3 Steps

e Example: one statement, 3 steps

 Circle c1 = new Circle()

step 1 step 2 step 3
cl cl | cl
(null) (null) (the Circle object's
reference)
The Circle object The Circle object

9/8/2020

CUNY | Brooklyn College

15

Reference Data Fields

* Data fields of a class can be of reference types

* Example

public class Student {

String name; // name has default value null

int age; // age has default value 0
boolean isScienceMajor; // isScienceMajor has default value false

char gender; // c has default value "\u0000'
}

The null Value

* If a data field of a reference type does not
reference any object, the data field holds a special
literal value, null.

Default Value for Variables

e Java assign default values to data fields
* null for a reference type
e O for a numeric type
* false for a boolean type,

e '\u000O' for a char type.

* However, Java assigns no default value to a local
variable inside a method.

Example: Examining Default Values
of Data Fields

* Running the program given the Student class
public class TestStudent {
public static void main(String[] args) {
Student student = new Student();
System.out.printin("name? " + student.name);
System.out.printin("age? " + student.age);
System.out.printIn("isScienceMajor? " + student.isScienceMajor);

System.out.printin("gender? " + student.gender);

Example: Examining Default Values
of Local Variables

 Java assigns no default value to a local variable inside a method.
* When attempting to compile the program, what would you observe?

public class Test {
public static void main(String[] args) {
int x; // x has no default value
String y; // y has no default value
System.out.printin("x is " + x);

System.out.printin("y is " +y);

Primitive Types and Reference Types

* Java has two categories of data types
* Primitive type

* Object reference type/reference type

Java Primitive Data Types

* 8 primitive data types

Type Description Default Size Example Literals
boolean True or false False 1 bit true, false

byte integer 0 8 bits (none)

char Unicode character \u0000 16 bits ‘a’, ‘'u0041’, \101’
short Integer 0 16 bits (none)

int Integer 0 32 bits -9,-8,0,12

long Integer 0 64 bits 3L, 1L, -1L, -3L

float Floating point 0.0 32 bits 3.14e10f, -1.23e-100f

double Floating point 0.0 64 bits 1.1eld, -3.14e10d

Primitive and Reference Types:
Difference

* |llustrate the difference using the example

inti=1
Primitive type inti i 1

Created using new Circle()

Circle ¢ = new Circle() c: Circle

Object type Circlec C reference >

radius = 1

Copying Variables

* Primitive and Reference types

Primitive type assignment i =

Before:

After:

Before:

Object type assignment c1 = c2

cl

c2

Y

cl: Circle

radius=5

|

c2: Circle

After:

cl -

c2

radius =9

cl: Circle

radius=5

|

c2: Circle

radius =9

Garbage Collection

e After cl1 = c2, the object previously referenced by
cl is no longer being referenced. This object
becomes a garbage. Garbage is automatically

collected by JVM.

Object type assignment c1 = ¢c2

After:

cl =
c2 |

|

Before:
cl —
c2 { ——l
cl: Circle c2: Circle
radius =5 radius =9

cl: Circle

c2: Circle

radius =5

radius =9

Garbage Collection: Tip

* If you know that an object is no longer needed, you
can explicitly assign null to a reference variable for
the object.

* The JVM will automatically collect the space if the
object is not referenced by any variable.

Questions

* Primitive and object/(object) reference types
* Accessing objects via reference variables
* Difference between primitive and reference types

* Garbage and garbage collection

Exercise

Create a directory for today’s exercises as a journal entry
Create a subdirectory for this exercise (i.e., ex01)

Complete exercise 9.5.5 in the textbook (your exercise
number may be different)

Revise the 4 programs so that each of the 4 programs can
compile and run

* Name the 4 classes as ShowErrorsA, ShowErrorsB, ShowErrorsC,
and ShoweErrorsD instead

Submit the work as part of the journal

About CodelLab Exercises

* Assighment 3

* Atip about Codelab exercises:

Unless specified otherwise, when defining a class in Codelab, add the
“public” keyword before the “class” keyword, as in,

public class Simple {
}
, add the “private” keyword before data fields, as in,
private int hours;
, and add the “public” keyword before methods, as in,

public int getHigh() { return high; }

