Logical Operators

Hui Chen

Department of Computer & Information Science

Brooklyn College

Objectives

- To combine conditions using logical operators (&&, ||, and !) (§3.10).
- To program using selection statements with combined conditions (LeapYear, Lottery) (§§3.11– 3.12).

Outline

- Discussed
 - Boolean data type and Boolean expressions
 - If-statements (one-way, two-way, multi-way, and nested ifstatements) and their flow charts
 - Common errors and pitfalls
 - 3 ("big") programming problems (subtraction quiz, compute BMI, compute taxes)
- Logical operators
- Two ("big") programming problems (LeapYear, Lottery)

Logical Operators

Operator	Name	Description
!	not	logical negation
&&	and	logical conjunction
	or	logical disjunction
^	exclusive or	logical exclusion

Truth Table for Operator !

р	! p	Example (assume age = 24, weight = 140)
true	false	!(age > 18) is false, because (age > 18) is true.
false	true	!(weight == 150) is true, because (weight == 150) is false.

Truth Table for Operator &&

p ₁	p ₂	p ₁ && p ₂	Example (assume age = 24, weight = 140)
false	false	false	(age <= 18) && (weight < 140) is false, because both
			conditions are both false.
false	true	false	
true	false	false	(age > 18) && (weight > 140) is false, because (weight
			> 140) is false.
true	true	true	(age > 18) && (weight >= 140) is true, because both
			(age > 18) and (weight ≥ 140) are true.

CUNY | Brooklyn College

Truth Table for Operator ||

p ₁	p ₂	$\mathbf{p}_1 \parallel \mathbf{p}_2$	Example (assume age = 24, weihgt = 140)
false	false	false	
false	true	true	$(age > 34) \parallel (weight <= 140)$ is true, because $(age > 34) \parallel (weight <= 140)$
			34) is false, but (weight <= 140) is true.
true	false	true	$(age > 14) \parallel (weight >= 150)$ is false,
			because (age > 14) is true.
true	true	true	

9/21/2021

Truth Table for Operator ^

p ₁	p ₂	p ₁ ^ p ₂	Example (assume age = 24, weight = 140)
false	false	false	$(age > 34) \land (weight > 140)$ is true, because $(age > 34)$ is false
			and (weight > 140) is false.
false	true	true	$(age > 34) \land (weight >= 140)$ is true, because $(age > 34)$ is
			false but (weight ≥ 140) is true.
true	false	true	(age > 14) ^ (weight > 140) is true, because (age > 14)
			is true and (weight > 140) is false.
true	true	false	

Let's use them in an example ...

 Here is a program that checks whether a number is divisible by <u>2</u> and <u>3</u>, whether a number is divisible by <u>2</u> or <u>3</u>, and whether a number is divisible by <u>2</u> or <u>3</u> but not both

Questions?

The & and | Operators

- Do not confuse them with && and ||
- Optional to understand & and | fully for now

If x is 1, what is x after this expression?

```
(x > 1) \& (x++ < 10)
```

If x is 1, what is x after this expression?

(1 > x) && (1 > x++)

How about (1 == x) | (10 > x++)?

(1 == x) || (10 > x++)?

Questions?

Programming Problem. Determining Leap Year?

- This program first prompts the user to enter a year as an <u>int</u> value and checks if it is a leap year.
- A year is a leap year if it is divisible by 4 but not by 100, or it is divisible by 400.
- (year % 4 == 0 && year % 100 != 0) || (year % 400
 == 0)

Programming Problem. Lottery

- Write a program that randomly generates a lottery of a two-digit number, prompts the user to enter a two-digit number, and determines whether the user wins according to the following rule:
 - If the user input matches the lottery in exact order, the award is \$10,000.
 - If the user input matches the lottery, the award is \$3,000.
 - If one digit in the user input matches a digit in the lottery, the award is \$1,000.

Questions?