
CISC 3115 TY2

Exception and Some Best 

Practice
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

10/20/2020 1CUNY | Brooklyn College



Outline

• Discussed

• Error and error handling

• Two approaches

• Exception

• The throwable class hierarchy

• System errors and semantics

• Runtime exceptions and semantics

• Checked errors and semantics

• Declaring, throwing, and catching exception

• Exception and some best practice

10/20/2020 CUNY | Brooklyn College 2



Exceptions are for Exceptional 

Conditions

• Exception handling usually requires time and 

resources because it requires 

• instantiating a new exception object, 

• rolling back the call stack, and 

• propagating the errors to the calling methods.

10/20/2020 CUNY | Brooklyn College 3



Some Best Practices

• Do throw specific Exceptions

• Throw early, catch late.

• better to throw a checked exception than to handle the 

exception poorly.

• Use exception only for exceptional situations

10/20/2020 CUNY | Brooklyn College 4

throw new RunTimeException(“Exception at runtime”);

if (args.length != 3) {
System.out.println(“Usage …”);

}

try {
d1 = Integer.parseInt(args[2]);

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println(“Usage …”);

}



Throw Specific Exceptions?

• Use the exception classes in the API whenever 

possible.

• Define custom exception classes if the predefined 

classes are not sufficient.

• How to define custom exception?

10/20/2020 CUNY | Brooklyn College 5



Questions

• Exceptions are expensive, and are for exceptional 

conditions. 

• Use the exception classes in the API whenever possible.

• Define custom exception classes if the predefined classes 

are not sufficient.

• Exceptions are commonly used for diagnosing 

problems in the programs, be specific!

• Exceptions are not abnormal. Organize your code. 

10/20/2020 CUNY | Brooklyn College 6


