
CISC 3115 TY2

Exceptions and Errors
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

10/20/2020 1CUNY | Brooklyn College

Outline

• Error and error handling

• Two approaches

• Exception

• The throwable class hierarchy

• System errors and semantics

• Runtime exceptions and semantics

• Checked errors and semantics

10/20/2020 CUNY | Brooklyn College 2

Runtime Error

• When the JVM detects that an operation cannot be

carried out

• Example: the divide-by-zero error

10/20/2020 CUNY | Brooklyn College 3

The Divide-by-Zero Error

import java.util.Scanner;

public class Quotient {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.println("Enter two integers: ");

int n1 = input.nextInt();

int n2 = input.nextInt();

System.out.println(n1 + " / " + n2 + " is " + (n1 / n2));

}

}

10/20/2020 CUNY | Brooklyn College 4

Handling Error: the What-IF

Approach

• Use an if statement to check whether the input is
valid

• Example:

if (number2 != 0) {

System.out.println(number1 + " / " + number2 + " is " +

(number1 / number2));

} else {

System.out.println("Divisor cannot be zero ");

}

10/20/2020 CUNY | Brooklyn College 5

The What-IF Approach:

Disadvantage?
• Use an if statement to check whether the input is valid

• Is there any disadvantage?

• Example:

if (number2 != 0) {

System.out.println(number1 + " / " + number2 + " is " +

(number1 / number2));

} else {

System.out.println("Divisor cannot be zero ");

}

10/20/2020 CUNY | Brooklyn College 6

You must
handle the
error at the
point where
you detects it.

Handling Error: the Exception

Approach
• Java supports Exception, representing an error or a condition that

prevents execution from proceeding normally

• Example:

try {

int result1 = quotient(n1, n2);

….

int result2 = quotient(n3, n4);

……

} catch (ArithmeticException e) {

System.out.println(“Divisor cannot be zero”);

}

10/20/2020 CUNY | Brooklyn College 7

The Exception Approach: Advantage

public static int quotient(int n1, int n2) {

if (n2 == 0) {

throw new ArithmeticException(

"Divisor cannot be zero.");

}

return n1 / n2;

}

}

public static void main(String[] args) {

……

try {

int result = quotient(n1, n2);

System.out.println(n1 + " / " + n2 +

" is " + result);

} catch (ArithmeticException e) {

System.out.println("Exception: " +

e.getMessage());

}

10/20/2020 CUNY | Brooklyn College 8

Notifying the caller an error
occurred

Handling the error upon
receiving the notification

• Separate notifying error from handling error

Notifying Error

• Using throws

• Example

throw new ArithmeticException(“Divisor cannot be zero.");

10/20/2020 CUNY | Brooklyn College 9

Handling Error

• Use try … catch …

• Example

try {

int result = quotient(n1, n2);

System.out.println(n1 + " / " + n2 +

" is " + result);

} catch (ArithmeticException e) {

System.out.println("Exception: " + e.getMessage());

}

10/20/2020 CUNY | Brooklyn College 10

Types of Exceptions

• Java defines a list of exceptions and errors called

Throwables that forms a class hierarchy

• System Error

• Runtime Exception

10/20/2020 CUNY | Brooklyn College 11

Exception Hierarchy

10/20/2020 CUNY | Brooklyn College 12

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

System Errors

10/20/2020 CUNY | Brooklyn College 13

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Semantics of System Errors

• System errors are thrown by JVM

• System errors extend the Error class.

• Semantics: internal system error

• Such errors rarely occur. If one does, there is little one

can do beyond notifying the occurrence of the error and

handling the termination of the program in a graceful

manner.

10/20/2020 CUNY | Brooklyn College 14

Exceptions

10/20/2020 CUNY | Brooklyn College 15

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Semantics of Exceptions

• Exception describes errors caused by your program

and external circumstances.

• It is expected that one may recover from these

errors or provide a meaningful intervention from

careful handling of the errors.

10/20/2020 CUNY | Brooklyn College 16

Runtime Exceptions

10/20/2020 CUNY | Brooklyn College 17

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Semantics of Runtime Exceptions

• RuntimeException is caused by programming errors, such as bad
casting, accessing an out-of-bounds array, and numeric errors.

• That is to day, if we, as programmers did not make any mistakes,
they should not have occurred.

• How is it my mistake when a user of my program enters 0 for n2 in
n1/n2?

• As an awesome programmer as you are, you should have anticipated
that a user may enter whatever she or he wishes to enter.

• Ideally, RuntimeExceptions should never occur to users when the
users are running your program

10/20/2020 CUNY | Brooklyn College 18

Questions?

• Class hierarchy of Throwable and subclasses

• Semantics of SystemError,

• Semantics of RuntimeException

• throws and try…catch…

10/20/2020 CUNY | Brooklyn College 19

Checked and Unchecked Exceptions

• Unchecked Exceptions

• RuntimeException, Error and their subclasses

• Checked Exceptions

• Any others in the Throwable class hierarchy

10/20/2020 CUNY | Brooklyn College 20

Unchecked Exceptions

10/20/2020 CUNY | Brooklyn College 21

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Unchecked
Exception

Checked Exceptions

10/20/2020 CUNY | Brooklyn College 22

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Checked
Exception

Checked vs. Unchecked Exception

• The Java compiler forces the programmer to check

and deal with the checked exceptions.

• The Java compiler does not forces the programmer

to check and deal with the unchecked exceptions

10/20/2020 CUNY | Brooklyn College 23

Unchecked Exceptions

• Subclasses of Error and RuntimeException

• Programming logic errors that are not recoverable

during runtime

• These are the logic errors that should be corrected

in the program.

• They may occur anywhere in your program.

10/20/2020 CUNY | Brooklyn College 24

Unchecked Exceptions

• Two examples of commonly seen

RuntimeExceptions

• NullPointException

• IndexOutOfBoundException

10/20/2020 CUNY | Brooklyn College 25

Questions

• The Throwable class hierarchy

• SystemError, RuntimeException

• Checked and unchecked exceptions

• NullPointException and IndexOutOfBoundException

10/20/2020 CUNY | Brooklyn College 26

