CISC 3115 TY2
Exceptions and Errors

Hui Chen
Department of Computer & Information Science

CUNY Brooklyn College

Outline

* Error and error handling
* Two approaches

* Exception

* The throwable class hierarchy
e System errors and semantics

* Runtime exceptions and semantics

* Checked errors and semantics

Runtime Error

* When the JVM detects that an operation cannot be
carried out

* Example: the divide-by-zero error

The Divide-by-Zero Error

import java.util.Scanner;

public class Quotient {
public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.printIn("Enter two integers: ");
int n1 = input.nextint();
int n2 = input.nextint();

System.out.printin(n1 +" /" +n2+"is" + (n1/n2));

Handling Error: the What-IF
Approach

e Use an if statement to check whether the input is
valid

* Example:
if (number2 !'=0) {

System.out.printin(numberl +" /" + number2 + "is " +
(numberl / number2));
} else {

System.out.printIn("Divisor cannot be zero ");

The What-IF Approach:
Disadvantage?

* Use an if statement to check whether the input is valid

* |s there any disadvantage?

* Example:
if (number2 !=0) { - You must
handle the
System.out.printin(numberl +" /" + number2 + "is " + — error at the
(numberl / number?)); point where .
~ you detects it.

} else {

System.out.printIn("Divisor cannot be zero ");

Handling Error: the Exception
Approach

* Java supports Exception, representing an error or a condition that
prevents execution from proceeding normally

 Example:

try {

int resultl = quotient(n1, n2);

int result2 = quotient(n3, n4);
} catch (ArithmeticException e) {

System.out.printIn(“Divisor cannot be zero”);

The Exception Approach: Advantage

« Separate notifying error from handling error

public static int quotient(int n1, int n2) { public static void main(String[] args) {
if (n2 == O) oo
throw new ArithmeticException(try {
4+ "Divisor cannot be zero."); int result = quotient(n1, n2);
} System.out.printin(n1+" /" +n2 +
returnnl / n2; "is " +result);
} } catch (ArithmeticException e) {

} System.out.println("ExceptioTn: "+
Notifying the caller an error e.getMessage());
occurred \ I

Handling the error upon

receiving the notification

Notifying Error

* Using throws

* Example

throw new ArithmeticException(“Divisor cannot be zero.");

Handling Error

e Use try ... catch ...

* Example

try {
int result = quotient(n1, n2);
System.out.printin(n1+" /" +n2 +
"is" + result);

} catch (ArithmeticException e) {

System.out.printIn("Exception: " + e.getMessage());

}

Types of Exceptions

* Java defines a list of exceptions and errors called
Throwables that forms a class hierarchy

* System Error

* Runtime Exception

Exception Hierarchy

ClassNotFoundException

IOException

Exception q—

Object q—

‘Throwable

10/20/2020

ArithmeticException

RuntimeException

<]_

——— Many more classes

LinkageError

Error

q VirtualMachineError

I— Many more classes

CUNY | Brooklyn College

NullPointerException

IndexOutOfBoundsException

Illegal ArgumentException

Many more classes

12

System Errors

ClassNotFoundException

ArithmeticException

IOException

Exception <]— NullPointerException

RuntimeException Q—

IndexOutOfBoundsException

— Many more classes

Object q_.Throwameq_ Illegal ArgumentException

+— Many more classes

LinkageError

I
I
Error <} VirtualMachineError I
I
I

I— Many more classes

10/20/2020 CUNY | Brooklyn College 13

Semantics of System Errors

e System errors are thrown by JVM
e System errors extend the Error class.

* Semantics: internal system error

* Such errors rarely occur. If one does, there is little one
can do beyond notifying the occurrence of the error and
handling the termination of the program in a graceful
mannetr.

Exceptions

r ______________________

I ClassNotFoundException

I ArithmeticException

I IOException

: Exception 4— NullPointerException

: RuntimeException Q—

| IndexOutOfBoundsException

I — Many more classes

Object <I -Throwable<| : Illegal ArgumentException

I_ _____________ e DMAN)LMOLE ClASSES e e

LinkageError

Error q VirtualMachineError

—— Many more classes

10/20/2020 CUNY | Brooklyn College 15

Semantics of Exceptions

* Exception describes errors caused by your program
and external circumstances.

* [t is expected that one may recover from these
errors or provide a meaningful intervention from
careful handling of the errors.

Runtime Exceptions

Obiject 4—

10/20/2020

Exception

‘Throwable

Error

q VirtualMachineError

ClassNotFoundException

IOException

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Illegal ArgumentException

LinkageError

—— Many more classes

CUNY | Brooklyn College

Many more classes

17

Semantics of Runtime Exceptions

* RuntimeException is caused by programming errors, such as bad
casting, accessing an out-of-bounds array, and numeric errors.

* That is to day, if we, as programmers did not make any mistakes,
they should not have occurred.
* How is it my mistake when a user of my program enters O for n2 in
nl/n2?
* As an awesome programmer as you are, you should have anticipated
that a user may enter whatever she or he wishes to enter.
* Ideally, RuntimeExceptions should never occur to users when the
users are running your program

Questions?

* Class hierarchy of Throwable and subclasses
e Semantics of SystemError,
* Semantics of RuntimeException

* throws and try...catch...

Checked and Unchecked Exceptions

* Unchecked Exceptions

* RuntimeException, Error and their subclasses

* Checked Exceptions

* Any others in the Throwable class hierarchy

Unchecked Exceptions

Obiject 4—

10/20/2020

-Throwableq—

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Illegal ArgumentException

ClassNotFoundException
IOException |
Exception 4— I
Il RuntimeException Q—
I —————— il
__ Manymoreclasses |
[
I
o i o]
LinkageError [
[

I Many moreclasses |

CUNY | Brooklyn College

Many more classes

1

Error q VirtualMachineError :\ U nChQC ked
Exception

21

Checked Exceptions

ClassNotFoundException
Checked B = e
Exception — | [oo

|
Obiject Q—Throwableq— I
|

10/20/2020 CUNY | Brooklyn College 22

Checked vs. Unchecked Exception

* The Java compiler forces the programmer to check
and deal with the checked exceptions.

* The Java compiler does not forces the programmer
to check and deal with the unchecked exceptions

Unchecked Exceptions

* Subclasses of Error and RuntimeException

* Programming logic errors that are not recoverable
during runtime

* These are the logic errors that should be corrected
in the program.

* They may occur anywhere in your program.

Unchecked Exceptions

* Two examples of commonly seen
RuntimeExceptions

* NullPointException

* IndexOutOfBoundException

Questions

* The Throwable class hierarchy
* SystemError, RuntimeException
* Checked and unchecked exceptions

* NullPointException and IndexOutOfBoundException

