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Outline

• Error and error handling

• Two approaches

• Exception

• The throwable class hierarchy

• System errors and semantics

• Runtime exceptions and semantics

• Checked errors and semantics
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Runtime Error

• When the JVM detects that an operation cannot be 

carried out

• Example: the divide-by-zero error
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The Divide-by-Zero Error

import java.util.Scanner;

public class Quotient {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.println("Enter two integers: ");

int n1 = input.nextInt();

int n2 = input.nextInt();

System.out.println(n1 + " / " + n2 + " is " + (n1 / n2));

}

}
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Handling Error: the What-IF 

Approach

• Use an if statement to check whether the input is 
valid

• Example:

if (number2 != 0) {

System.out.println(number1 + " / " + number2 + " is " +

(number1 / number2));

}  else {

System.out.println("Divisor cannot be zero ");

}
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The What-IF Approach: 

Disadvantage?
• Use an if statement to check whether the input is valid

• Is there any disadvantage? 

• Example:

if (number2 != 0) {

System.out.println(number1 + " / " + number2 + " is " +

(number1 / number2));

}  else {

System.out.println("Divisor cannot be zero ");

}
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You must 
handle the 
error at the 
point where 
you detects it.



Handling Error: the Exception 

Approach
• Java supports Exception, representing an error or a condition that 

prevents execution from proceeding normally

• Example:

try {

int result1 = quotient(n1, n2);

….

int result2 = quotient(n3, n4);

……

} catch (ArithmeticException e) {

System.out.println(“Divisor cannot be zero”);

}
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The Exception Approach: Advantage

public static int quotient(int n1, int n2) {

if (n2 == 0) {

throw new ArithmeticException(

"Divisor cannot be zero.");

}

return n1 / n2;

}

}

public static void main(String[] args) {

……

try {

int result = quotient(n1, n2);

System.out.println(n1 + " / " + n2 + 

" is "  + result);

} catch (ArithmeticException e) {

System.out.println("Exception: " +

e.getMessage());

}
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Notifying the caller an error
occurred

Handling the error upon 
receiving the notification

• Separate notifying error from handling error



Notifying Error

• Using throws

• Example

throw new ArithmeticException(“Divisor cannot be zero.");
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Handling Error

• Use try … catch …

• Example

try {

int result = quotient(n1, n2);

System.out.println(n1 + " / " + n2 + 

" is "  + result);

} catch (ArithmeticException e) {

System.out.println("Exception: " +  e.getMessage());

}

10/20/2020 CUNY | Brooklyn College 10



Types of Exceptions

• Java defines a list of exceptions and errors called 

Throwables that forms a class hierarchy

• System Error

• Runtime Exception
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Exception Hierarchy
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IllegalArgumentException 



System Errors
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Semantics of System Errors

• System errors are thrown by JVM

• System errors extend the Error class. 

• Semantics: internal system error

• Such errors rarely occur. If one does, there is little one 

can do beyond notifying the occurrence of the error and 

handling the termination of the program in a graceful 

manner. 
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Exceptions
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Semantics of Exceptions

• Exception describes errors caused by your program 

and external circumstances. 

• It is expected that one may recover from these 

errors or provide a meaningful intervention from 

careful handling of the errors. 
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Runtime Exceptions
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Semantics of Runtime Exceptions

• RuntimeException is caused by programming errors, such as bad 
casting, accessing an out-of-bounds array, and numeric errors.

• That is to day, if we, as programmers did not make any mistakes, 
they should not have occurred. 

• How is it my mistake when a user of my program enters 0 for n2 in 
n1/n2?

• As an awesome programmer as you are, you should  have anticipated 
that a user may enter whatever she or he wishes to enter. 

• Ideally, RuntimeExceptions should never occur to users when the 
users are running your program
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Questions?

• Class hierarchy of Throwable and subclasses

• Semantics of SystemError,

• Semantics of RuntimeException

• throws and try…catch…
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Checked and Unchecked Exceptions

• Unchecked Exceptions

• RuntimeException, Error and their subclasses

• Checked Exceptions

• Any others in the Throwable class hierarchy
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Unchecked Exceptions
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Checked Exceptions
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Checked vs. Unchecked Exception

• The Java compiler forces the programmer to check 

and deal with the checked exceptions.

• The Java compiler does not forces the programmer 

to check and deal with the unchecked exceptions
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Unchecked Exceptions

• Subclasses of Error and RuntimeException

• Programming logic errors that are not recoverable 

during runtime

• These are the logic errors that should be corrected 

in the program.

• They may occur anywhere in your program.
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Unchecked Exceptions

• Two examples of commonly seen 

RuntimeExceptions

• NullPointException

• IndexOutOfBoundException
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Questions

• The Throwable class hierarchy

• SystemError, RuntimeException

• Checked and unchecked exceptions

• NullPointException and IndexOutOfBoundException
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