
CISC 3115 TY2

Map
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

12/3/2020 1CUNY | Brooklyn College



Outline

• Discussed

• Concept of data structure

• Use data structures

• List

• Sorting and searching in lists and arrays

• Stack

• Queue and priority queue

• Set

• To discuss

• map

11/15/2018 CUNY | Brooklyn College 2



Outline of This Lecture

• Concept of the Map data structure

• Map in Java

• Map, HashMap, LinkedHashMap, and TreeMap

• Examples

11/15/2018 CUNY | Brooklyn College 3



Motivation

• In many applications, we want to find an element in 
collection

• Students enrolled in a class. Find a student given her or his 
name

• Passengers on board an airplane. Find a passenger given her 
or his seat no. 

• How may we do it? 

• Sequential search. Inefficient, if we do it a lot

• Sort and binary search. Great, just remember to sort. 

• Use a map

12/3/2020 CUNY | Brooklyn College 4



The Map Data Structure

• A map maps keys to values. 

• A map cannot contain duplicate keys.

• Each key can map to at most one value.

• Note: if we remove this constraint, i.e., a key can map to more than 
one value, we call it a multi-set.

• Compare to List

• In a list, the indexes are integer. It is like map an integer to the 
object at the index

• In a map, it is like that indexes can be any data type. It maps an 
object to another. 

• Example: a student’s name → a Student

12/3/2020 CUNY | Brooklyn College 5



Map and List

12/3/2020 CUNY | Brooklyn College 6



Map Interface and Type Hierarchy

• Map: a group of objects, each of which is 

associated with a key. 

• Must use a key to get the object from a map

• Must use a key to put the object into the map

12/3/2020 CUNY | Brooklyn College 7



Map Interface in Java

12/3/2020 CUNY | Brooklyn College 8



12/3/2020 CUNY | Brooklyn College 9

Map Interface and 

Concrete Subclasses



Entry Interface

12/3/2020 CUNY | Brooklyn College 10



HashMap and TreeMap

• Two concrete implementations of the Map 

interface. 

• The HashMap class is efficient for locating a value, 

inserting a mapping, and deleting a mapping. 

• The TreeMap class, implementing SortedMap, is 

efficient for traversing the keys in a sorted order

12/3/2020 CUNY | Brooklyn College 11



LinkedHashMap

• It extends HashMap with a linked list implementation that supports an 
ordering of the entries in the map. T

• The entries in a HashMap are not ordered, but the entries in a 
LinkedHashMap can be retrieved in either insertion order or the access 
order

• Insertion order: the order in which they were inserted into the map

• The no-arg constructor constructs a LinkedHashMap with the insertion order.

• Access order: the order in which they were last accessed, from least 
recently accessed to most recently. 

• To construct a LinkedHashMap with the access order, use the 
LinkedHashMap(initialCapacity, loadFactor, true)

12/3/2020 CUNY | Brooklyn College 12



HashMap and TreeMap: Example 1

• This example creates a hash map that maps 

borrowers to mortgages. 

• The program first creates a hash map with the 

borrower’s name as its key and mortgage as its 

value. 

• The program then creates a tree map from the 

hash map, and displays the mappings in ascending 

order of the keys

12/3/2020 CUNY | Brooklyn College 13



HashMap and TreeMap: Example 2

• Write an application counts the occurrences of words in 

a text and displays the words and their occurrences in 

ascending order of the words.

• The program uses a hash map to store a pair consisting 

of a word and its count. 

• For each word, check whether it is already a key in the map. If 

not, add the key and value 1 to the map. Otherwise, increase 

the value for the word (key) by 1 in the map. 

• To sort the map, convert it to a tree map.

12/3/2020 CUNY | Brooklyn College 14



Questions?

• Map, HashMap, LinkedHashMap, TreeMap

12/3/2020 CUNY | Brooklyn College 15


