CISC 3115 TY2
Map

Hui Chen
Department of Computer & Information Science

CUNY Brooklyn College

Outline

* Discussed
e Concept of data structure
* Use data structures
* List
e Sorting and searching in lists and arrays

Stack

Queue and priority queue

* Set

* To discuss

* map

Outline of This Lecture

* Concept of the Map data structure
* Map in Java

* Map, HashMap, LinkedHashMap, and TreeMap

* Examples

Motivation

* In many applications, we want to find an element in
collection

e Students enrolled in a class. Find a student given her or his
name

* Passengers on board an airplane. Find a passenger given her
or his seat no.

* How may we do it?

e Sequential search. Inefficient, if we do it a lot

e Sort and binary search. Great, just remember to sort.

* Use a map

The Map Data Structure

* A map maps keys to values.

* A map cannot contain duplicate keys.

Each key can map to at most one value.

* Note: if we remove this constraint, i.e., a key can map to more than
one value, we call it a multi-set.

* Compare to List

* In alist, the indexes are integer. It is like map an integer to the
object at the index

* Inamap, itis like that indexes can be any data type. It maps an
object to another.

* Example: a student’s name = a Student

Map and List

Search key Search key

- Corresponding Corresponding
i / element value l /value
A map—>| = Y— . ¥ \
(-] H—Entry 13430 [Jomn | —Entry
(]) ’
[| | 132-56-6290 Peter
L) |
(])
(a) (b)

12/3/2020 CUNY | Brooklyn College 6

Map Interface and Type Hierarchy

* Map: a group of objects, each of which is

associated with a key.

* Must use a key to get the object from a map

* Must use a key to put the object into the map

i—- SortedMap N--- NavigableMap N |

Map

12/3/2020

Interfaces

CuU

— TreeMap |

. AbstractMap M

Abstract Classes

NY | Brooklyn College

w LinkedHashMap

Concrete Classes

Map Interface in Java

«interface»
java.util. Map<K, V>

+clear(): void
+containsKey(key: Object): boolean

+containsValue(value: Object): boolean

+entrySet(): Set<Map.Entry<K,V>>

+get(key: Object): V

+i1sEmpty(): boolean

+keySet(): Set<K>

+put(key: K, value: V): V

+putAli(m: Map<? extends K,? extends
V>): void

+remove(key: Object): V

+size(): int

+values(): Collection<V>

Removes all entries from this map.

Returns true if this map contains an entry for the
specified key.

Returns true if this map maps one or more keys to the
specified value.

Returns a set consisting of the entries in this map.

Returns the value for the specified key in this map.

Returns true if this map contains no entries.

Returns a set consisting of the keys in this map.

Puts an entry into this map.

Adds all the entries from m to this map.

Removes the entries for the specified key.
Returns the number of entries in this map.
Returns a collection consisting of the values in this map.

12/3/2020 CUNY | Brooklyn College 8

«interface»
Jjava.util.Map<K, V>

java.util.AbstractMap<K, V> |

«interface»
Java.util.SortedMap<K, V>

e

java.util. HashMap<K,V>

+HashMap ()
+HashMap(initialCapacity: int, loadFactor: float)
+HashMap(m: Map<? extends K, ? extends V>)

+firstkey () : K

+lastKey (J: K

+comparator (): Comparator<? super K>)
+headMap (toKey: K): SortedMap<K, V>
+tailMap(fromKey: K): SortedMap<K, V>

ﬁ‘;

java.util. LinkedHashMap<K,V>

+LinkedHashMap ()

+LinkedHashMap(m: Map<? extends K,? extends V>)

+LinkedHashMap(initialCapacity: int,
loadFactor: float, accessOrder: boolean)

~

«interface»
Java.util. NavigableMap<K, V>

Map Interface and
Concrete Subclasses

12/3/2020 CUNY | Brooklyn College

+floorKey(key: K): K

+ceilingKey(key: K): K

+lowerKey(key: K): K

+higherKey(key: K): K
+pollFirstEntry(): Map.EntrySet<K, V>
+polllastEntry(): Map.EntrySet<K, V>

N

| I

java.util. TreeMap<K,V>

+TreeMap()
+TreeMap(m: Map<? extends K,? extends V>)
+TreeMap(c: Comparator<? super K>)

Entry Interface

«interface»
java.util. Map. Entry<K, V>
+getKey(): K Returns the key from this entry.
+getValue(: V Returns the value from this entry.
+setValue(value: V): void Replaces the value in this entry with a new value.

12/3/2020 CUNY | Brooklyn College 10

HashMap and TreeMap

* Two concrete implementations of the Map
interface.

* The HashMap class is efficient for locating a value,
inserting a mapping, and deleting a mapping.

* The TreeMap class, implementing SortedMap, is
efficient for traversing the keys in a sorted order

LinkedHashMap

* |t extends HashMap with a linked list implementation that supports an
ordering of the entries in the map. T

* The entries in a HashMap are not ordered, but the entries in a
LinkedHashMap can be retrieved in either insertion order or the access
order

* Insertion order: the order in which they were inserted into the map
* The no-arg constructor constructs a LinkedHashMap with the insertion order.

* Access order: the order in which they were last accessed, from least
recently accessed to most recently.

* To construct a LinkedHashMap with the access order, use the
LinkedHashMap(initialCapacity, loadFactor, true)

HashMap and TreeMap: Example 1

* This example creates a hash map that maps
borrowers to mortgages.

* The program first creates a hash map with the
borrower’s name as its key and mortgage as its
value.

* The program then creates a tree map from the
hash map, and displays the mappings in ascending
order of the keys

HashMap and TreeMap: Example 2

* Write an application counts the occurrences of words in
a text and displays the words and their occurrences in
ascending order of the words.

* The program uses a hash map to store a pair consisting
of a word and its count.

* For each word, check whether it is already a key in the map. If
not, add the key and value 1 to the map. Otherwise, increase
the value for the word (key) by 1 in the map.

* To sort the map, convert it to a tree map.

Questions?

* Map, HashMap, LinkedHashMap, TreeMap

