
CISC 3115 TY2

Relationships of Classes: Part I
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

9/8/2020 1CUNY | Brooklyn College

Notice

• The slides are always subject to change.

• The slides posted before the lecture are for preview

only, and they are a draft and their content can

change significantly.

9/8/2020 CUNY | Brooklyn College 2

Outline

• Discussed

• Concepts of two programming paradigms

• Procedural and Object-Oriented

• Design classes for problem solving

• Think in terms of class

• Discover relationship of classes

• Association

• Aggregation

• Composition (to be revisited in Chapter 13)

• Inheritance (to be discussed in Chapter 11)

9/8/2020 3CUNY | Brooklyn College

Relationship of Classes

• To analyze the problem and design classes, we

need to explore the relationships among classes

(and objects of the classes).

• Association

• Aggregation

• Composition (to be revisited in Chapter 13)

• Inheritance (to be discussed in Chapter 11)

9/8/2020 CUNY | Brooklyn College 4

Association

• A general binary relationship that describes an

activity between two classes

• UML diagram

• Consider 3 classes, Student, Course, and Faculty

9/8/2020 CUNY | Brooklyn College 5

Association: UML notation

• Role

• Take, Teach; arrow indicates “subject” & “object” in English

• Multiplicity

• A course has 5 ~ 60 students (5..60)

• A student takes any number of courses (*)

• A faculty teaches 0 ~ 3 courses (0..3)

• A course has 1 faculty (1)

9/8/2020 CUNY | Brooklyn College 6

Class Representation: Association

• Using data fields and methods

9/8/2020 CUNY | Brooklyn College 7

public class Student {

private Course[] courseList;

public void addCourse(Course c) {

}

}

public class Course {

private Student[] studentList;

private Faculty faculty;

public void addStudent(Student s) {

}

public void setFaculty(Faculty f) {

}

}

public class Faculty {

private Course[] courseList;

public void addCourse(Course c) {

}

}

Aggregation

• A special form of association that represents an

ownership relationship between two objects

• It models a has-a relationship

• Owner object/class: aggregating object/class

• Subject object/class: aggregated object/class

• UML diagram

• Consider 2 classes, Student and Address

9/8/2020 CUNY | Brooklyn College 8

Student Address
1..3 1

Composition

• A special case of the aggregation relationship where the

existence of the aggregated object is dependent on the

aggregating object (i.e., aggregated object does not exist by

itself)

• UML diagram

• Consider 3 classes, Name, Student, and Address

9/8/2020 CUNY | Brooklyn College 9

Name Address Student

Composition Aggregation

1..3 1 1 1

Class Representation: Aggregation

and Composition
• An aggregation relationship is usually represented as a data

field in the aggregating class.

9/8/2020 CUNY | Brooklyn College 10

public class Name {

 ...

}

public class Student {

 private Name name;

 private Address address;

 ...

}

public class Address {

 ...

}

Aggregated class Aggregating class Aggregated class

Name Address Student

Composition Aggregation

1..3 1 1 1

Aggregation or Composition

• Aggregation and composition relationships are

represented using classes in similar ways, many

texts do not differentiate them and call both

compositions.

9/8/2020 CUNY | Brooklyn College 11

Aggregation Between Same Class

• Aggregation may exist between objects of the same

class.

• Example

• A person may have a supervisor who is also a person.

9/8/2020 CUNY | Brooklyn College 12

Self-Aggregation: UML Diagram and

Class Representation

• UML diagram

• Class representation

9/8/2020 CUNY | Brooklyn College 13

Person

Supervisor

1

1

public class Person {
// The type for the data is the class itself
private Person supervisor;
...

}

Person

Supervisor

1

m

public class Person {
// The type for the data is the class itself
private Person[] supervisors;
...

}

Example: The Course Class

9/8/2020 CUNY | Brooklyn College 14

Course

-courseName: String

-students: String[]

-numberOfStudents: int

+Course(courseName: String)

+getCourseName(): String

+addStudent(student: String): void

+dropStudent(student: String): void

+getStudents(): String[]

+getNumberOfStudents(): int

The name of the course.

An array to store the students for the course.

The number of students (default: 0).

Creates a course with the specified name.

Returns the course name.

Adds a new student to the course.

Drops a student from the course.

Returns the students in the course.

Returns the number of students in the course.

Example: Designing The

StackOfInteger Class

• A stack is a data structure that holds data in a last-

in, first-out fashion

9/8/2020 CUNY | Brooklyn College 15

Example: The StackOfInteger Class

9/8/2020 CUNY | Brooklyn College 16

StackOfIntegers

-elements: int[]

-size: int

+StackOfIntegers()

+StackOfIntegers(capacity: int)

+empty(): boolean

+peek(): int

+push(value: int): int

+pop(): int

+getSize(): int

An array to store integers in the stack.

The number of integers in the stack.

Constructs an empty stack with a default capacity of 16.

Constructs an empty stack with a specified capacity.

Returns true if the stack is empty.

Returns the integer at the top of the stack without

removing it from the stack.

Stores an integer into the top of the stack.

Removes the integer at the top of the stack and returns it.

Returns the number of elements in the stack.

Example: Implementing the

StackOfInteger Class

9/8/2020 CUNY | Brooklyn College 17

Questions?

• Relationship among classes

• Association

• Aggregation

• Composition (to be revisited in Chapter 13)

• Inheritance (to be discussed in Chapter 11)

• How to represent the relationship using classes/objects?

9/8/2020 CUNY | Brooklyn College 18

