
CISC 3115 TY2

Selected Interfaces in Java API
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

11/5/2020 1CUNY | Brooklyn College

Outline
• Discussed

• Recap

• Inheritance and polymorphism

• Abstract method and class

• Interface

• Motivation

• Define interface

• Extend interface

• Implement interface

• Use interface as data type

• Selected interfaces in Java API

• Comparable, Cloneable, and concept of functional interface

• Static and default methods and constants in interface

11/5/2020 CUNY | Brooklyn College 2

Different Classes, Same Behaviors

• Different classes, although vastly different, may exhibit
similar behavior

• Any communication devices can transmit and receive

• Any vehicles can move

• Any objects can be compared to each other

• Any objects may be cloned

• ……

• Using subclasses (inheritance via subclass) may be too
rigid for this kind of flexibility in real life.

11/5/2020 CUNY | Brooklyn College 3

Interface in Selected Java API

• Any objects can be compared to each other

• The Comparable interface

• The Comparator interface

• Any objects may be cloned

• The Cloneable interface

11/5/2020 CUNY | Brooklyn College 4

The Comparable Interface

• Java defines a Comparable interface

• In the java.lang package, and has a compareTo method

package java.lang;

public interface Comparable<E> {

public int compareTo(E o);

}

11/5/2020 CUNY | Brooklyn College 5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Comparable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Comparable.htmlcompareTo(T)

The compareTo Method

• Compare two objects, e.g.,

• lhs.compareTo(rhs)

• Generally, returns an integer

• negative integer if lhs is less than rhs

• 0 if lhs is equal to rhs

• positive integer if lhs is greater than rhs

11/5/2020 CUNY | Brooklyn College 6

Implementation of the Interface in

Java

• Many Java classes implement the Comparable

interface

• Examples

• Wrapper classes for primitive types

• Boolean, Byte, Short, Integer, Long, Float, Double, Character

• Decimal wrapper class

• BigInteger, BigDecimal

11/5/2020 CUNY | Brooklyn College 7

Implementation of the Interface in

Java

• See the list in the Java API documentation

11/5/2020 CUNY | Brooklyn College 8

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Comparable.html

Examples: Java Implementation of

the Comparable Interface

• Examples

System.out.println(Integer.valueOf(3).compareTo(Integer.valueOf(5)));

System.out.println("ABC".compareTo("ABE"));

java.util.Date date1 = new java.util.Date(2013, 1, 1);

java.util.Date date2 = new java.util.Date(2012, 1, 1);

System.out.println(date1.compareTo(date2));

11/5/2020 CUNY | Brooklyn College 9

Sorting and Comparable

• Comparable’s are often used for sorting objects

• Sorting arrays

• Sorting collections (e.g., ArrayList)

• Two scenarios

• Sorting objects of data types that have already

implemented the Comparable interfaces

• Sorting objects of data types for which you will

implement the Comparable interfaces

11/5/2020 CUNY | Brooklyn College 10

Sorting: Examples

• Sorting objects of data types that have had the Comparable interfaces
implemented

• e.g., sorting wrapper objects of primitive types

• Write generic sort method ourselves to sort arrays or collections (only the arrays example
given)

• Sort arrays: use java.util.Arrays::sort method

• Sort collections (e.g., ArrayList): use java.util.Collections::sort method (your exercise)

• Sorting objects of data types for which you will implement the
Comparable interfaces

• e.g., sorting rectangles according their areas

• Sort arrays: use java.util.Arrays::sort method

• Sort collections (e.g., ArrayList): use java.util.Collections::sort method

11/5/2020 CUNY | Brooklyn College 11

Sorting: Implementing Comparable:

Example

11/5/2020 CUNY | Brooklyn College 12

Sorting Order

• Standard or ascending order

• e.g., 1, 2, 3, 4, 5, …

• Descending order

• e.g., 5, 4, 3, 2, 1, …

• Can we control the sorting order?

• Override the compareTo method. But is it always a good
approach?

• Use the Comparator interface and the sort method in
java.util.Arrays and java.util.Collections.

11/5/2020 CUNY | Brooklyn College 13

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Comparator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Arrays.htmlsort(T%5B%5D,java.util.Comparator)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collections.htmlsort(T[],java.util.Comparator)

Examples: Control Sorting Order

• Sorting an array of rectangles (Arrays)

• Sorting an ArrayList of rectangles (Collections)

class RectangleComparator implements

Comparator<Rectangle> {

int compare(Rectangle lhs, Rectangle rhs) {

….

}

}

11/5/2020 CUNY | Brooklyn College 14

Sorting: Implementing Comparator:

Example
• Relationship among the classes

11/5/2020 CUNY | Brooklyn College 15

GeometricObject

Rectangle

<<interface>>
java.util.Comparator<Rectangle>

+compare(lhs: Rectangle, rhs: Rectangle): int

RectangleComparator
+compare(lhs: Rectangle, rhs: Rectangle): int

Questions?

• The Comparable interface

• The Comparator interface

• Comparable or Comparator, which one to use?

• Comparing objects

• Sorting arrays

• Sorting collections

11/5/2020 CUNY | Brooklyn College 16

The Cloneable Interface

• Called a Marker Interface, as it does not contain constants or
methods.

package java.lang;

public interface Cloneable {

}

• Purpose:

• Marker interface: to denote that a class possesses certain desirable
properties.

• The Cloneable marker interface: to denote that the class’s objects can
be cloned using the clone() method defined in the Object class

• The class, in general, should implement the Cloneable interface, and define the
mechanism an object is being cloned

11/5/2020 CUNY | Brooklyn College 17

Cloneable in Java Library

• Many classes (e.g., Date and Calendar) in the Java

library implement Cloneable.

• Thus, the instances of these classes can be cloned.

11/5/2020 CUNY | Brooklyn College 18

Examples: Using clone and Cloneable

• Example:

Calendar calendar = new GregorianCalendar(2003, 2, 1);

Calendar calendarCopy = (Calendar)calendar.clone();

System.out.println("calendar == calendarCopy is " +

(calendar == calendarCopy));

System.out.println("calendar.equals(calendarCopy) is " +

calendar.equals(calendarCopy));

• The result (and why?):

• calendar == calendarCopy is false

• calendar.equals(calendarCopy) is true

11/5/2020 CUNY | Brooklyn College 19

Implementing Cloneable

• The Cloneable is a marker interface that does not

have any method

• What to implement?

• The contract is that we ought to implement the clone

method in the java.lang.Object class

11/5/2020 CUNY | Brooklyn College 20

Example: Implementing Cloneable

• The House class

• The mechanism to implement the clone method

• Need to duplicate the object state, but …

• Examine two concepts

• Shallow copy

• Deep copy

11/5/2020 CUNY | Brooklyn College 21

Shallow Copy vs Deep Copy

• Let’s examine this code snippet, what does it do?

House house1 = new House(1, 1750.50);

House house2 = (House)house1.clone();

11/5/2020 CUNY | Brooklyn College 22

Shallow Copy

• House house2 = (House)house1.clone();

11/5/2020 CUNY | Brooklyn College 23

Deep Copy

• House house2 = (House)house1.clone();

11/5/2020 CUNY | Brooklyn College 24

Questions?

• Concept of marker interface

• The Cloneable interface

• How to implement the Cloneable interface

• Shallow and deep copy

• But, how deep is deep?

11/5/2020 CUNY | Brooklyn College 25

Default and Static Methods and

Constants in Interface

• Your tasks: carefully examine the notes in Section

13.5 in the text book

• Default methods in Java interface

• Static methods in Java interface

• Constants in Java interface

11/5/2020 CUNY | Brooklyn College 26

Questions?

• Any exercises?

11/5/2020 CUNY | Brooklyn College 27

