CISC 3115 TY2
Selected Interfaces in Java API

Hui Chen
Department of Computer & Information Science

CUNY Brooklyn College

Outline

e Discussed

* Recap
* Inheritance and polymorphism
* Abstract method and class

* Interface
* Motivation

¢ Define interface

Extend interface
* Implement interface

* Use interface as data type
* Selected interfaces in Java API

 Comparable, Cloneable, and concept of functional interface

e Static and default methods and constants in interface

Different Classes, Same Behaviors

* Different classes, although vastly different, may exhibit
similar behavior

* Any communication devices can transmit and receive

* Any vehicles can move

* Any objects can be compared to each other

e Any objects may be cloned

» Using subclasses (inheritance via subclass) may be too
rigid for this kind of flexibility in real life.

Interface in Selected Java AP

* Any objects can be compared to each other

 The Comparable interface

 The Comparator interface

* Any objects may be cloned

* The Cloneable interface

The Comparable Interface

e Java defines a Comparable interface

* In the java.lang package, and has a compareTo method

package java.lang;

public interface Comparable<E> {

public int compareTo(E 0);

}

11/5/2020 CUNY | Brooklyn College

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Comparable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Comparable.htmlcompareTo(T)

The compareTo Method

 Compare two objects, e.g.,
* lhs.compareTo(rhs)
* Generally, returns an integer
* negative integer if lhs is less than rhs

e Oif lhsis equal torhs

* positive integer if |hs is greater than rhs

Implementation of the Interface in
Java

* Many Java classes implement the Comparable
interface

* Examples
* Wrapper classes for primitive types
* Boolean, Byte, Short, Integer, Long, Float, Double, Character

* Decimal wrapper class

* Biglnteger, BigDecimal

Implementation of the Interface in

Java

e See the list in the Java APl documentation

11/5/2020

Module java.base
Package java.lang

Interface Comparable<T>

Type Parameters:

T - the type of objects that this object may be compared to

All Known Subinterfaces:

AnnotationTypeDoc, AnnotationTypeElementDoc, ArrayType, ByteValue, CharValue,
ConstructorDoc, Delayed, Doc, DoubleValue, ExecutableMemberDoc, Field, FieldDox
Name, PackageDoc, Path, ProcessHandle, ProgramElementDoc, ReferenceType, RootD«

All Known Implementing Classes:

AbstractChronology, AbstractRegionPainter.PaintContext.CacheMode, AccessMoc
AttributeTree.ValueKind, Authenticator.RequestorType, BigDecimal, BigInteger
CertPathValidatorException.BasicReason, Character, Character.UnicodeScript,
Component.BaselineResizeBehavior, CompositeName, CompoundName, ConversionCon
Diagnostic.Kind, Dialog.ModalExclusionType, Dialog.ModalityType, Doclet.Opti
DrbgParameters.Capability, DropMode, Duration, ElementKind, Elements.0Origin, E
FormatStyle, Formatter.BigDecimalLayoutForm, FormSubmitEvent.MethodType, Gre
HijrahDate, HijrahEra, HttpClient.Redirect, HttpClient.Version, InquireType,]
JConsoleContext.ConnectionState, JDBCType, JTable.PrintMode, KeyRep.Type, Lan

CUNY | Brooklyn College

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Comparable.html

Examples: Java Implementation of
the Comparable Interface

* Examples

System.out.printIn(Integer.valueOf(3).compareTo(Integer.valueOf(5)));
System.out.printin("ABC".compareTo("ABE"));

java.util.Date datel = new java.util.Date(2013, 1, 1);

java.util.Date date2 = new java.util.Date(2012, 1, 1);

System.out.printin(datel.compareTo(date2));

Sorting and Comparable

 Comparable’s are often used for sorting objects
* Sorting arrays
 Sorting collections (e.g., ArrayList)

* Two scenarios

* Sorting objects of data types that have already
implemented the Comparable interfaces

* Sorting objects of data types for which you will
implement the Comparable interfaces

Sorting: Examples

* Sorting objects of data types that have had the Comparable interfaces
implemented

* e.g., sorting wrapper objects of primitive types

* Write generic sort method ourselves to sort arrays or collections (only the arrays example
given)

* Sort arrays: use java.util.Arrays::sort method

* Sort collections (e.g., ArrayList): use java.util.Collections::sort method (your exercise)

* Sorting objects of data types for which you will implement the
Comparable interfaces

* e.g., sorting rectangles according their areas
* Sort arrays: use java.util.Arrays::sort method

* Sort collections (e.g., ArrayList): use java.util.Collections::sort method

Sorting: Implementing Comparable:
Example

GeometricObject \ «interface»

java.lang. Comparable<ComparableRectangle>
i +comparelTo(o: ComparableRectangle): int
Rectangle \ PaN
PN '

ComparableRectangle |

11/5/2020 CUNY | Brooklyn College 12

Sorting Order

e Standard or ascending order
*eg,1,23,4,5,..

* Descending order
*eg,54,3,21,..

e Can we control the sorting order?

e Override the compareTo method. But is it always a good
approach?

e Use the Comparator interface and the sort method in
java.util.Arrays and java.util.Collections.

11/5/2020 CUNY | Brooklyn College

13

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Comparator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Arrays.htmlsort(T%5B%5D,java.util.Comparator)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collections.htmlsort(T[],java.util.Comparator)

Examples: Control Sorting Order

 Sorting an array of rectangles (Arrays)

 Sorting an ArrayList of rectangles (Collections)

class RectangleComparator implements
Comparator<Rectangle> {

int compare(Rectangle lhs, Rectangle rhs) {

Sorting: Implementing Comparator:
Example

* Relationship among the classes

<<interface>>

GeometricObject java.util.Comparator<Rectangle>

+compare(lhs: Rectangle, rhs: Rectangle): int

/ N\

RectangleComparator
Rectangle -——- :
+compare(lhs: Rectangle, rhs: Rectangle): int

11/5/2020 CUNY | Brooklyn College 15

Questions?

* The Comparable interface

* The Comparator interface

 Comparable or Comparator, which one to use?
 Comparing objects

* Sorting arrays

* Sorting collections

The Cloneable Interface

e Called a Marker Interface, as it does not contain constants or
methods.

package java.lang;

public interface Cloneable {

}
* Purpose:

* Marker interface: to denote that a class possesses certain desirable
properties.

* The Cloneable marker interface: to denote that the class’s objects can
be cloned using the clone() method defined in the Object class

* The class, in general, should implement the Cloneable interface, and define the
mechanism an object is being cloned

Cloneable in Java Library

* Many classes (e.g., Date and Calendar) in the Java
library implement Cloneable.

* Thus, the instances of these classes can be cloned.

Examples: Using clone and Cloneable

* Example:
Calendar calendar = new GregorianCalendar(2003, 2, 1);
Calendar calendarCopy = (Calendar)calendar.clone();
System.out.printIn("calendar == calendarCopy is " +
(calendar == calendarCopy));
System.out.printin("calendar.equals(calendarCopy) is " +

calendar.equals(calendarCopy));
* The result (and why?):

* calendar == calendarCopy is false

» calendar.equals(calendarCopy) is true

Implementing Cloneable

e The Cloneable is a marker interface that does not
have any method

 What to implement?

* The contract is that we ought to implement the clone
method in the java.lang.Object class

Example: Implementing Cloneable

* The House class

* The mechanism to implement the clone method

* Need to duplicate the object state, but ...

* Examine two concepts
* Shallow copy
* Deep copy

Shallow Copy vs Deep Copy

* Let’s examine this code snippet, what does it do?

House housel = new House(1, 1750.50);

House house2 = (House)housel.clone();

Shallow Copy

* House house2 = (House)housel.clone();

11/5/2020

housel: House Memory
id =1 e |
area = 1750.50 == 1750.50
whenBuilt = reference > whenBuilt: Date
date object
house?2 = contents
housel.clone()
house2: House Memory
id =1 > |
area = 1750.50 =—> 1750.50
whenBuilt

CUNY | Brooklyn College

=>» reference =

(a)

23

Deep Copy

* House house2 = (House)housel.clone();

11/5/2020

housel: House Memory
id = 1 > |
area = 1750.50 =—t> 1750.50
whenBuilt - reference f—> whenBuilt: Date
date object
house?2 = contents
housel.clone()
house2: House Memory
area = 1750.50 — 1750.50 whenBuilt: Date

whenBuilt

=> reference

date object

—> cohtents

CUNY | Brooklyn College

(b)

24

Questions?

* Concept of marker interface

* The Cloneable interface

* How to implement the Cloneable interface
* Shallow and deep copy

* But, how deep is deep?

Default and Static Methods and
Constants in Interface

* Your tasks: carefully examine the notes in Section
13.5 in the text book

e Default methods in Java interface
e Static methods in Java interface

e Constants in Java interface

Questions?

* Any exercises?

